This paper addresses the task of (complex) conversational question answering over a knowledge graph. For this task, we propose LASAGNE (muLti-task semAntic parSing with trAnsformer and Graph atteNtion nEtworks). It is the first approach, which employs a transformer architecture extended with Graph Attention Networks for multi-task neural semantic parsing. LASAGNE uses a transformer model for generating the base logical forms, while the Graph Attention model is used to exploit correlations between (entity) types and predicates to produce node representations. LASAGNE also includes a novel entity recognition module which detects, links, and ranks all relevant entities in the question context. We evaluate LASAGNE on a standard dataset for complex sequential question answering, on which it outperforms existing baseline averages on all question types. Specifically, we show that LASAGNE improves the F1-score on eight out of ten question types; in some cases, the increase in F1-score is more than 20% compared to the state of the art.
RDF triplestores and property graph databases are two approaches for data management which are based on modeling, storing and querying graph-like data. In spite of such common principle, they present special features that complicate the task of database interoperability. While there exist some methods to transform RDF graphs into property graphs, and vice versa, they lack compatibility and a solid formal foundation. This paper presents three direct mappings (schema-dependent and schema-independent) for transforming an RDF database into a property graph database, including data and schema. We show that two of the proposed mappings satisfy the properties of semantics preservation and information preservation. The existence of both mappings allows us to conclude that the property graph data model subsumes the information capacity of the RDF data model.
While a number of quality metrics have been successfully proposed for datasets in the Web of Data, there is a lack of trust metrics that can be computed for any given dataset. We argue that reuse of data can be seen as an act of trust. In the Semantic Web environment, datasets regularly include terms from other sources, and each of these connections express a degree of trust on that source. However, determining what is a dataset in this context is not straightforward. We study the concepts of dataset and dataset link, to finally use the concept of Pay-Level Domain to differentiate datasets, and consider usage of external terms as connections among them. Using these connections we compute the PageRank value for each dataset, and examine the influence of ignoring predicates for computation. This process has been performed for more than 300 datasets, extracted from the LOD Laundromat. The results show that reuse of a dataset is not correlated with its size, and provide some insight on the limitations of the approach and ways to improve its efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.