Cu(II) monitoring is a matter of great interest to researchers due to its toxicity and adverse environmental effects. Among different methods for detecting Cu(II), ion-selective electrode (ISE) is more advantageous as they are low-cost, easy to fabricate, and highly selective. Here, we report a simple, inexpensive, and reproducible procedure for the fabrication of Cu(II) ion-selective electrodes using CuS particles and polyvinyl chloride (PVC) as a matrix. CuS particles, obtained by chemical precipitation, were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), and energy-dispersive X-Ray spectroscopy (EDX). Optimization of the membrane compositions was done to get a well-behaved sensor by varying amounts of CuS, PVC, and acetophenone (AP). A membrane composition of 0.4 g CuS, 0.5 g PVC, and 1.0 mL AP in 5.0 mL tetrahydrofuran (THF) gave a Nernstian slope of 27.31 mV per decade change of Cu(II) ion over a wide range of concentration down to 64 ppb (1 × 10 −6 M). The sensor gave a fast response time of 25 s, and it indicated the endpoint in a potentiometric titration of Cu(II) with standard EDTA solution. A pH-independent potential response was obtained in the pH 4.0–6.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.