It is crucial to consider the fluid–thermal–structural interaction (FTSI) in designing the scramjet inlet for sustained hypersonic flight. To understand the aerothermal and aeroelastic responses of the planar hypersonic inlets under different flight Mach numbers and aspect ratios, a three-dimensional FTSI framework was developed and validated. After that, the FTSI characteristics under different flight Mach numbers and aspect ratios were investigated. The result reveals that the most obvious horizontal displacement happens at the cowl lip leading edge, whereas the maximum vertical displacement takes place at the compression-ramp leading edge. The FTSI improves the capture area and generates an additional compression angle due to the different thermal expansions between the windward and leeward panels. The thermal expansion in the spanwise direction causes the cowl lip to hump into an arc, and the maximum height happens at the midplane. The effects of FTSI on the inlet flowfield, the mass flow rate, and the total pressure ratio under different flight Mach numbers and aspect ratios were obtained. Overall, the FTSI can improve the contraction ratio, the actual mass flow rate, and the pressure ratio while causing the total pressure ratio to decrease by up to 14.64%.
TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractThe ability to monitoring bottomhole flowing pressure in pumping oil wells provides important information regarding both reservoir and artificial lift performance. Converting surface pressure measurements to bottomhole is currently accomplished by locating the fluid level in the annulus using a sonic device and then applying a correlation to estimate the density of the gas-cut liquid column above the perforations. This gascut liquid column exhibits Zero Net Liquid Flow (ZNLF) conditions where the casing head gas flows through a nearly stagnant liquid. A review of literature reveals that the correlations currently in use by the industry are based on low pressure and low viscosity data. Increasingly, operators are encountering high viscosity fluids and in some instances, casinghead gas flows into gathering systems which are not the typical low pressure systems. This paper presents recent experimental measurements for ZNLF under high viscosity and pressure conditions. The results indicate that viscosity and pressure have a significant effect on the calculated bottomhole pressures and that these effects are not accounted for in the currently applied methods. New methods are presented to calculate multiphase density, i.e. gradient correction factor, under high viscosity and high pressure conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.