Aim:To investigate the combined effects of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin and its active metabolite simvastatin acid, in relation to CYP3A4 inhibition. Methods: We conducted a single-dose pharmacokinetic study of simvastatin in 26 healthy volunteers screened for their SLCO1B1 c.521T>C and ABCB1 c.1236C>T-2677G>T-3435C>T genotypes, with and without amlodipine pretreatment. The genetic effects and drug-interaction effect on simvastatin pharmacokinetic parameters were analyzed using a linear-mixed model. Results: The SLCO1B1 c.521T>C variant significantly increased exposure to simvastatin acid by around 40% (p < 0.05), similar to that caused by the amlodipine pretreatment. The ABCB1 gene showed no influence on exposure to simvastatin or simvastatin acid. Conclusion: Only SLCO1B1, not ABCB1 genotype, is likely to be associated with simvastatin-induced myopathy. SLCO1B1 genotyping may be particularly beneficial in simvastatin users who are co-administered CYP3A4 inhibitors.
AbstractsBackgroundClinical trial globalization is a major trend for industry-sponsored clinical trials. There has been a shift in clinical trial sites towards emerging regions of Eastern Europe, Latin America, Asia, the Middle East, and Africa. Our study objectives were to evaluate the current characteristics of clinical trials and to find out the associated multiple factors which could explain clinical trial globalization and its implications for clinical trial globalization in 2011–2013.MethodsThe data elements of “phase,” “recruitment status,” “type of sponsor,” “age groups,” and “design of trial” from 30 countries were extracted from the ClinicalTrials.gov website. Ten continental representative countries including the USA were selected and the design elements were compared to those of the USA. Factors associated with trial site distribution were chosen for a multilinear regression analysis.ResultsThe USA, Germany, France, Canada, and United Kingdom were the “top five” countries which frequently held clinical trials. The design elements from nine continental representative countries were quite different from those of the USA; phase 1 trials were more prevalent in India (OR 1.517, p < 0.001) while phase 3 trials were much more prevalent in all nine representative countries than in the USA. A larger number of “child” age group trials was performed in Poland (OR 1.852, p < 0.001), Israel (OR 1.546, p = 0.005), and South Africa (OR 1.963, p < 0.001) than in the USA. Multivariate analysis showed that health care expenditure per capita, Economic Freedom Index, Human Capital Index, and Intellectual Property Rights Index could explain the variance of regional distribution of clinical trials by 63.6%.ConclusionsThe globalization of clinical trials in the emerging regions of Asia, South Africa, and Eastern Europe developed in parallel with the factors of economic drive, population for recruitment, and regulatory constraints.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-017-2025-1) contains supplementary material, which is available to authorized users.
We propose using O-desmethylvenlafaxine/venlafaxine for CYP2D6 phenotyping, and O-desmethylvenlafaxine/venlafaxine with venlafaxine + O-desmethylvenlafaxine for predicting venlafaxine treatment outcomes in future prospective studies.
To investigate the effect of the variant CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine (4-HAT) and N-desmethylatomoxetine (NAT), in healthy subjects, a single oral dose of atomoxetine was administered to 62 subjects with a CYP2D6*wt/*wt (*wt = *1 or *2, n = 22), CYP2D6*wt/*10 (n = 22) or CYP2D6*10/*10 (n = 18) genotype. Plasma samples were then collected for 24 h after atomoxetine administration. The concentrations of atomoxetine and its metabolites were assayed using LC-MS/MS. For atomoxetine, the Cmax, AUC0-∞, t1/2 and CL/F showed genotype-dependent differences. The CYP2D6*10/*10 and CYP2D6*wt/*10 groups showed 1.74- and 1.15-fold higher Cmax, 3.40- and 1.33-fold higher AUC0-∞, and 69.7 and 24.6 % lower CL/F, compared to those of the CYP2D6*wt/*wt group, respectively. The Cmax and t1/2 for 4-HAT were lower and longer in the CYP2D6*10/*10 group than those in the CYP2D6*wt/*wt group, but the AUC0-∞ was not different between these groups. The Cmax, AUC0-∞ and t1/2 for NAT were profoundly greater in the CYP2D6*10/*10 group than they were in the CYP2D6*wt/*wt group. The concentration of active moieties of atomoxetine (atomoxetine + 4-HAT) in the CYP2D6*10/*10 group was 3.32-fold higher than that in the CYP2D6*wt/*wt group. The mean exposure to active moieties of atomoxetine was markedly higher in subjects with the CYP2D6*10/*10 genotype compared to that in those with the CYP2D6*wt/*wt genotype. The higher systemic exposure of the active atomoxetine moieties in CYP2D6*10/*10 individuals may increase the risk of concentration-related adverse events of atomoxetine, although this has not yet been clinically confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.