SUMMARY
Hematopoietic stem cells (HSCs) are the precursors of the hematopoietic system responsible for the lifelong production of blood and bone marrow. Given the emerging importance of epigenetic regulation in HSC fate decisions and malignant transformation, we investigated the role of the DNA methyltransferase Dnmt3b through genetic ablation in HSCs – either alone or in combinatorial deletion with its paralog Dnmt3a. While conditional inactivation of Dnmt3b alone in adult HSCs had minor functional impact, simultaneous deletion of Dnmt3a and Dnmt3b was synergistic resulting in a severe block in differentiation and enhanced HSC self-renewal. Dnmt3a/b-null HSCs displayed activated β-catenin signaling, partly accounting for the differentiation block. Loss of Dnmt3a in HSCs resulted in global DNA hypomethylation, but a paradoxical hypermethylation of CpG islands, most of which was eliminated in Dnmt3a/b-null HSCs. These data demonstrate distinct roles for Dnmt3b in HSC differentiation and provide unprecedented resolution into the epigenetic regulation of HSC fate decisions.
Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate.
SUMMARYSomatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs) skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.