With the rationale that the neuropathological similarities between scrapie and Alzheimer's disease reflect convergent pathological mechanisms involving altered gene expression, we set out to identify molecular events involved in both processes, using scrapie as a model to study the time course of these changes. We differentially screened a cDNA library constructed from scrapie-infected mice to identify mRNAs that increase or decrease during disease and discovered in this way two mRNAs that are increased in scrapie and Alzheimer's disease. These mRNAs were subsequently shown by sequence analysis to encode apolipoprotein E and cathepsin D (EC 3.4.23.5). Using in situ hybridization and immunocytochemistry to define the cellular and anatomic pathology of altered gene expression, we found that in both diseases the increase in apolipoprotein E and cathepsin D mRNAs and proteins occurred in activated astrocytes. Iit scrapie, the increase in gene expression occurred soon after the amyloid-forming abnormal isoform of the prion protein has been shown to accumulate in astrocytes. In Alzheimer's disease, the increased expression of cathepsin D also occurred in association with ,-amyloid. These studies reveal some of the molecular antecedents of neuropathological changes in scrapie and Alzheiner's disease and accord new prominence to the role of astrocytes in neurodegenerative conditions.
The intracellular location of rabbit poxvirus DNA within cells during the course of infection has been determined by the hybridization in situ of labeled viral DNA probes to uninfected and infected cells under various conditions. Extensive control experiments were performed to demonstrate that DNA could be detected selectively and accurately within the cell. Our results suggest that rabbit poxvirus DNA is located only within the cytoplasm during the reproductive cycle, and we found no evidence that viral DNA enters the cell nucleus. The pattern of hybridization of viral DNA at early times (1 and 2 h postinfection) and in the presence of inhibitors of viral DNA synthesis suggests that there may be an association between the input viral DNA and some structural component of the host cell. A number of observations support the hypothesis that the host cell nucleus is required for a productive poxvirus infection. Our results are discussed in terms of the possible role of the nucleus in the replication of poxviruses.
Unconventional agents and conventional viruses provide model systems to investigate the pathogenesis of Alzheimer's disease (AD). The essay which follows examines the hypothetical role of herpes simplex in AD and presents some generally applicable experimental approaches to detecting genes in brain tissues. The concluding section, on parallels between AD and diseases of the brain caused by unconventional viruses, defines strategies for isolating genes related to pathology. RESUME: Speculation sur le role des agents transmissibles dans la pathogenese de la maladie d'Alzheimer. Les agents non-con ventionnels et les virus con ventionnels fournissent des sy steme modeles pour l'investigation de la pathogenese de la maladie d'Alzheimer (MA). Nous analysons dans cet article le role hypothetique du virus de l'herpes simplex dans la MA et nous presentons des approches expeYimentales d'application generate pour detecter les genes dans le tissu cerebral. La conclusion qui traite des paralleles entre la MA et les maladies du cerveau causees par des virus non-conventionnels elabore des strategies pour isoler des genes qui sont en rapport avec un etat pathologique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.