Recent experimental and direct numerical simulation data of two-dimensional, isothermal wall-bounded incompressible turbulent flows indicate that Reynolds-number effects are not only present in the outer layer but are also quite noticeable in the inner layer. The effects are most apparent when the turbulence statistics are plotted in terms of inner variables. With recent advances made in Reynolds-stress and near-wall modeling, a near-wall Reynolds-stress closure based on a recently proposed quasi-linear model for the pressure strain tensor is used to analyse wall-bounded flows over a wide range of Reynolds numbers. The Reynolds number varies from a low of 180, based on the friction velocity and pipe radius/channel half-width, to 15406, based on momentum thickness and free stream velocity. In all the flow cases examined, the model replicates the turbulence statistics, including the Reynolds-number effects observed in the inner and outer layers, quite well. Furthermore, the model reproduces the correlation proposed for the location of the peak shear stress and an appropriately defined Reynolds number, and the variations of the near-wall asymptotes with Reynolds numbers. It is conjectured that the ability of the model to replicate the asymptotic behavior of the near-wall flow is most responsible for the correct prediction of the Reynolds-number effects.
A high-speed infrared camera is used to measure the temperature of blade tips in a cooled high-pressure turbine operating at corrected engine conditions in The Ohio State University Turbine Test Facility. These experiments create a challenging problem for infrared imaging since the rotor turns at over 13,000 rpm with tip speeds on the order of 300 m/s, and the surface temperature of the airfoils is on the order of 350 K. This means that the camera needs to capture a low intensity signal in a short time period. This paper will review the design and operation of a measurement procedure to accomplish this difficult task along with the post-processing steps necessary to extract useful data. Raw infrared images are processed by deblurring the images using a non-blind Wiener filter and mapping the two-dimensional data onto the three-dimensional blade. This paper also describes experiments covering a range of cooling flow rates and main flow temperatures. In addition, several tests with no main flow and only cooling flow were performed at lower speeds to reduce motion blur and enable the separation of internal and external heat transfer information. Results show that the infrared data is consistent and can provide quantitative comparisons of cooling performance even at the high rotation speed. This paper presents the lessons learned for high-speed infrared measurement along with representative data to illustrate the repeatability and capability of the measurement scheme as well as suggested improvements to guide further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.