A B S T R A C T PurposeThe primary objectives of this phase I/II study were to evaluate the safety and immunogenicity of combination therapy consisting of concurrent trastuzumab and human epidermal growth factor receptor 2 (HER2)/neu-specific vaccination in patients with HER2/neu-overexpressing metastatic breast cancer. Patients and MethodsTwenty-two patients with stage IV HER2/neu-positive breast cancer receiving trastuzumab therapy were vaccinated with an HER2/neu T-helper peptide-based vaccine. Toxicity was graded according to National Cancer Institute criteria, and antigen specific T-cell immunity was assessed by interferon gamma enzyme-linked immunosorbent spot assay. Data on progression-free and overall survival were collected. ResultsConcurrent trastuzumab and HER2/neu vaccinations were well tolerated, with 15% of patients experiencing an asymptomatic decline in left ventricular ejection fraction below the normal range during combination therapy. Although many patients had pre-existing immunity specific for HER2/neu and other breast cancer antigens while treated with trastuzumab alone, that immunity could be significantly boosted and maintained with vaccination. Epitope spreading within HER2/ neu and to additional tumor-related proteins was stimulated by immunization, and the magnitude of the T-cell response generated was significantly inversely correlated with serum transforming growth factor beta levels. At a median follow-up of 36 months from the first vaccine, the median overall survival in the study population has not been reached. ConclusionCombination therapy with trastuzumab and a HER2/neu vaccine is associated with minimal toxicity and results in prolonged, robust, antigen-specific immune responses in treated patients.
Purpose: We aim to characterize VTX-2337, a novel Toll-like receptor (TLR) 8 agonist in clinical development, and investigate its potential to improve monoclonal antibody-based immunotherapy that includes the activation of natural killer (NK) cells.Experimental Design: HEK-TLR transfectants were used to compare the selectivity and potency of VTX-2337, imiquimod, CpG ODN2006, and CL075. The ability of VTX-2337 to induce cytokine and chemokine production from human peripheral blood mononuclear cells (PBMC) and activation of specific immune cell subsets was examined. The potential for VTX-2337 to activate NK cell activity through direct and indirect mechanisms was also investigated. Finally, we tested the potential for VTX-2337 to augment antibodydependent cell-mediated cytotoxicity (ADCC), especially in individuals with low-affinity FcgR3A singlenucleotide polymorphism (SNP).Results: VTX-2337 selectively activates TLR8 with an EC 50 of about 100 nmol/L and stimulates production of TNFa and interleukin (IL)-12 from monocytes and myeloid dendritic cells (mDC). VTX-2337 stimulates IFNg production from NK cells and increases the cytotoxicity of NK cells against K562 and ADCC by rituximab and trastuzumab. Effects of VTX-2337 on NK cells were, in part, from direct activation as increased IFNg production and cytotoxic activity were seen with purified NK cells. Finally, VTX-2337 augments ADCC by rituximab in PBMCs with different FcgR3A genotypes (V
Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.