Abstract-This paper provides a framework to automatically generate a hybrid controller that guarantees that the robot can achieve its task when a robot model, a class of admissible environments, and a high-level task or behavior for the robot are provided. The desired task specifications, which are expressed in a fragment of linear temporal logic (LTL), can capture complex robot behaviors such as search and rescue, coverage, and collision avoidance. In addition, our framework explicitly captures sensor specifications that depend on the environment with which the robot is interacting, which results in a novel paradigm for sensor-based temporal-logicmotion planning. As one robot is part of the environment of another robot, our sensor-based framework very naturally captures multirobot specifications in a decentralized manner. Our computational approach is based on first creating discrete controllers satisfying specific LTL formulas. If feasible, the discrete controller is then used to guide the sensor-based composition of continuous controllers, which results in a hybrid controller satisfying the highlevel specification but only if the environment is admissible.Index Terms-Controller synthesis, hybrid control, motion planning, sensor-based planning, temporal logic.
In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal ordering of different tasks. In order to provide computational solutions to this problem, we first construct discrete abstractions of robot motion based on some environmental decomposition. We then generate discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion also satisfies the exact same formula. Abstract-In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal ordering of different tasks. In order to provide computational solutions to this problem, we first construct discrete abstractions of robot motion based on some environmental decomposition. We then generate discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion also satisfies the exact same formula. Keywords
Abstract-Given a robot model and a class of admissible environments, this paper provides a framework for automatically and verifiably composing controllers that satisfy high level task specifications expressed in suitable temporal logics. The desired task specifications can express complex robot behaviors such as search and rescue, coverage, and collision avoidance. In addition, our framework explicitly captures sensor specifications that depend on the environment with which the robot is interacting, resulting in a novel paradigm for sensor-based temporal logic motion planning. As one robot is part of the environment of another robot, our sensor-based framework very naturally captures multi-robot specifications. Our computational approach is based on first creating discrete controllers satisfying so-called General Reactivity(1) formulas. If feasible, the discrete controller is then used in order to guide the sensor-based composition of continuous controllers resulting in a hybrid controller satisfying the high level specification, but only if the environment is admissible.
Robot motion planning algorithms have focused on low-level reachability goals taking into account robot kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an integrated approach to the design of closed-loop hybrid controllers that guarantee by construction that the resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so-called Linear Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in the presence of an adversary that may instantaneously reposition the robot within the environment a finite number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic specification, which supervises a finite family of continuous feedback controllers, ensuring consistency between the discrete plan and the continuous execution. Abstract-Robot motion planning algorithms have focused on low-level reachability goals taking into account robot kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an integrated approach to the design of closed-loop hybrid controllers that guarantee by construction that the resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so-called Linear Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in the presence of an adversary that may instantaneously reposition the robot within the environment a finite number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic specification, which supervises a finite family of continuous feedback controllers, ensuring consistency between the discrete plan and the continuous execution.
The Linear Temporal Logic MissiOn Planning (LTLMoP) toolkit is a software package designed to assist in the rapid development, implementation, and testing of highlevel robot controllers. In this toolkit, structured English and Linear Temporal Logic are used to write high-level reactive task specifications, which are then automatically transformed into correct robot controllers that can be used to drive either a simulated or a real robot. LTLMoP's modular design makes it ideal for research in areas such as controller synthesis, semantic parsing, motion planning, and human-robot interaction.
Recently, Linear Temporal Logic (LTL) has been successfully applied to high-level task and motion planning problems for mobile robots. One of the main attributes of LTL is its close relationship with fragments of natural language. In this paper, we take the first steps toward building a natural language interface for LTL planning methods with mobile robots as the application domain. For this purpose, we built a structured English language which maps directly to a fragment of LTL.
This paper considers the problem of motion planning for a hybrid robotic system with complex and nonlinear dynamics in a partially unknown environment given a temporal logic specification. We employ a multi-layered synergistic framework that can deal with general robot dynamics and combine it with an iterative planning strategy. Our work allows us to deal with the unknown environmental restrictions only when they are discovered and without the need to repeat the computation that is related to the temporal logic specification. In addition, we define a metric for satisfaction of a specification. We use this metric to plan a trajectory that satisfies the specification as closely as possible in cases in which the discovered constraint in the environment renders the specification unsatisfiable. We demonstrate the efficacy of our framework on a simulation of a hybrid second-order car-like robot moving in an office environment with unknown obstacles. The results show that our framework is successful in generating a trajectory whose satisfaction measure of the specification is optimal. They also show that, when new obstacles are discovered, the reinitialization of our framework is computationally inexpensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.