To meet the increasing demand for its services, a cloud system should make optimum use of its available resources. Additionally, the high and low oscillations in cloud workload are another significant symmetrical issue that necessitates consideration. A suggested particle swarm optimization (PSO)-based ensemble meta-learning workload forecasting approach uses base models and the PSO-optimized weights of their network inputs. The proposed model employs a blended ensemble learning strategy to merge three recurrent neural networks (RNNs), followed by a dense neural network layer. The CPU utilization of GWA-T-12 and PlanetLab traces is used to assess the method’s efficacy. In terms of RMSE, the approach is compared to the LSTM, GRU, and BiLSTM sub-models.
A collaborative recommender system based on a latent factor model has achieved significant success in the field of personalized recommender systems. However, the latent factor model suffers from sparsity problems. It is also limited in its ability to extract non-linear data features, resulting in poor recommendation performance. Inspired by the success of deep learning in different application areas, we incorporate deep learning into our proposed method to overcome the above problems. In this paper, we propose a dual deep learning and embedding-based latent factor model that considers dense user and item feature vectors. The model combines the existing deep learning and latent factor models to extract deep abstractions and non-linear feature representations of the data for rating prediction. The core idea is to map the dense user and item vectors generated by embedding techniques into dual, fully connected deep neural network architectures. In these two separate architectures, it learns the non-linear representation of the input data. The method then predicts the rating score by integrating the factors obtained from the two independent structures using the inner product. From the experimental result, we observe that the proposed model outperformed state-of-the-art existing models in real-world datasets (MovieLens ML-100K and ML-1M).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.