Video streaming is one of the killer applications in recent years. Video transcoding plays an important role in the video streaming service to cope with the various purposes. Specifically, content owners and publishers heavily utilize video transcoders to reconfigure source video in a variety of formats, video qualities, and bitrate to provide end users with the best possible quality of service. In this paper, we present VideoCoreCluster, a low-cost and energy-efficient transcoder cluster that is suitable for live streaming services. We designed and implemented real-time video transcoder cluster using cheap ($35), powerful, and energy-efficient Raspberry Pi. The quality of transcoded video provided by VideoCoreCluster is similar to the best software-based video transcoder while consuming significantly less energy (<3 W). We have proposed a scheduling algorithm based on priority of video stream and transcoding capacity. Our cluster manager provides reliable and scalable streaming services, because it uses the characteristics of adaptive bitrate scheme. We have deployed our transcoding cluster to provide IP-based TV streaming services on our university campus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.