We study the mechanical system consisting of the following variant of the planar pendulum. The suspension point oscillates harmonically in the vertical direction, with small amplitude $\varepsilon$, about the center of a circumference which is located in the plane of oscillations of the pendulum. The circumference has a uniform distribution of electric charges with total charge $Q$ and the bob of the pendulum, with mass $m$, carries an electric charge $q$. We study the motion of the pendulum as a function of three parameters: $\varepsilon$, the ratio of charges $\mu=\frac{q}{Q}$ and a parameter $\alpha$ related to the frequency of oscillations of the suspension point and the length of the pendulum. As the speed of oscillations of the mass $m$ are small magnetic effects are disregarded and the motion is subjected only to the gravity force and the electrostatic force. The electrostatic potential is determined in terms of the Jacobi elliptic functions. We study the parametric resonance of the linearized equations about the stable equilibrium finding the boundary surfaces of stability domains using the Deprit – Hori method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.