Abstract. An analytical approach to analyze the diffraction of an arbitrarily directed complex-source beam (CSB) by an acoustically soft or hard semi-infinite circular cone is presented. The beam is generated by assigning a complexvalued location to a point source; its waist and direction are defined by the real and imaginary parts of the source coordinate, respectively. The corresponding scalar boundary-value problem is solved by a spherical-multipole analysis. The solution requires the calculation of associated Legendre functions of the first kind for complex-valued arguments which turns out to be a non-trivial task. Beside a numerical analysis of the corresponding algorithms we present numerical results for the total near-and scattered far-fields.
This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.