Abstract. We present Ontop, an open-source Ontology-Based Data Access (OBDA) system that allows for querying relational data sources through a conceptual representation of the domain of interest, provided in terms of an ontology, to which the data sources are mapped. Key features of Ontop are its solid theoretical foundations, a virtual approach to OBDA, which avoids materializing triples and is implemented through the query rewriting technique, extensive optimizations exploiting all elements of the OBDA architecture, its compliance to all relevant W3C recommendations (including SPARQL queries, R2RML mappings, and OWL 2 QL and RDFS ontologies), and its support for all major relational databases.
We present the framework of ontology-based data access, a semantic paradigm for providing a convenient and user-friendly access to data repositories, which has been actively developed and studied in the past decade. Focusing on relational data sources, we discuss the main ingredients of ontology-based data access, key theoretical results, techniques, applications and future challenges.
We propose a novel framework for ontology-based access to temporal log data using a datalog extension datalogMTL of the Horn fragment of the metric temporal logic MTL. We show that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case full MTL is known to be undecidable. We also prove that nonrecursive datalogMTL is PSPACE-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to temporal log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets.
Despite the dramatic growth of data accumulated by enterprises, obtaining value out of it is extremely challenging. In particular, the data access bottleneck prevents domain experts from getting the right piece of data within a constrained time frame. The Optique Platform unlocks the access to Big Data by providing end users support for directly formulating their information needs through an intuitive visual query interface. The submitted query is then transformed into highly optimized queries over the data sources, which may include streaming data, and exploiting massive parallelism in the backend whenever possible. The Optique Platform thus responds to one major challenge posed by Big Data in data-intensive industrial settings.
Abstract. We present an extension of the ontology-based data access platform Ontop that supports answering SPARQL queries under the OWL 2 QL direct semantics entailment regime for data instances stored in relational databases. On the theoretical side, we show how any input SPARQL query, OWL 2 QL ontology and R2RML mappings can be rewritten to an equivalent SQL query solely over the data. On the practical side, we present initial experimental results demonstrating that by applying the Ontop technologies-the tree-witness query rewriting, T -mappings compiling R2RML mappings with ontology hierarchies, and T -mapping optimisations using SQL expressivity and database integrity constraints-the system produces scalable SQL queries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.