Dinutuximab (ch14.18) was the first approved monoclonal antibody against the tumor‐associated antigen disialoganglioside GD2. Despite its success in treating neuroblastoma (NB), it triggers a significant amount of neuropathic pain in patients, possibly through complement‐dependent cytotoxicity (CDC). We hypothesized that modifying ch14.18 using antibody engineering techniques, such as humanization, affinity maturation, and Fc engineering, may enable the development of next‐generation GD2‐specific antibodies with reduced neuropathic pain and enhanced antitumor activity. In this study we developed the H3‐16 IgG1m4 antibody from ch14.18 IgG1. H3‐16 IgG1m4 exhibited enhanced binding activity to GD2 molecules and GD2‐positive cell lines as revealed by ELISA, and its cross‐binding activity to other gangliosides was not altered. The CDC activity of H3‐16 IgG1m4 was decreased, and the antibody‐dependent cellular cytotoxicity (ADCC) activity was enhanced. The pain response after H3‐16 IgG1m4 antibody administration was also reduced, as demonstrated using the von Frey test in Sprague–Dawley (SD) rats. In summary, H3‐16 IgG1m4 may have potential as a monoclonal antibody with reduced side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.