Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.
Comprehensive transcriptome analysis of leaf and root tissues of Nothapodytes nimmoniana unravels several putative pathway genes, transcription factors and CYPs related to camptothecin (CPT) biosynthesis. Additionally, post-transcriptional suppression by artificial microRNA (aMIR) of NnCYP76B6 (geraniol 10-hydroxylase) suggests its role in CPT biosynthesis. Tissue-specific LC-MS/MS analysis revealed the presence of secologanin as the central intermediate of MIA pathway in N. nimmoniana. Nothapodytes nimmoniana is a rich source of potent anticancer drug camptothecin (CPT) whose biosynthetic pathway is unresolved due to the lack of genomic and transcriptomic information. Present investigation entails deep transcriptome analysis of N. nimmoniana which led to identification of putative pathway genes and regulatory components involved in CPT biosynthesis. Using Illumina HiSeq 2500 sequencing platform a total of 31,172,889 (6.23 Gb) and 31,218,626 (6.24 Gb) raw reads were generated from leaf and root wood, respectively. These were assembled de novo into 138,183 unique contigs. Additionally, 16 cytochrome P450 transcripts related to secondary metabolism were also identified. Further, transcriptome data pool presented 1683 putative transcription factors of which transcripts corresponding to WRKY TFs were the most abundant (14.14%). A total of 2741 transcripts were differentially expressed out of which 478 contigs showed downregulation in root wood and 2263 contigs were up-regulated. Further, comparative analyses of 17 genes involved in CPT biosynthetic pathway were validated by qRT-PCR. On basis of intermediates, two distinct seco-iridoid pathways are involved in the biosynthesis of monoterpene indole alkaloids either through multiple isomers of strictosidinic acid or strictosidine. Tissue-specific LC-MS/MS analysis revealed the presence of secologanin as the central intermediate of MIA pathway in N. nimmoniana. Geraniol-10 hydroxylase (NnCYP76B6) an important enzyme in CPT biosynthesis which specifically shunts geraniol into the secologanin pathway was also cloned from the trancriptome resource. In planta transient expression of NnCYP76B6 showed a significant enhancement in mRNA transcript levels coincident with enhanced CPT accumulation. Further, artificial microRNA (aMIR) mediated downregulation of NnCYP76B6 resulted in reduction of mRNA transcript levels as well as CPT content in comparison to control. These empirical results suggest a plausible regulatory role for NnCYP76B6 in CPT biosynthesis and also establish a valuable repository for deciphering various structural, rate limiting and regulatory genes of CPT biosynthetic pathway.
Background Nothapodytes nimmoniana , a plant of pivotal medicinal significance is a source of potent anticancer monoterpene indole alkaloid (MIA) camptothecin (CPT). This compound owes its potency due to topoisomerase-I inhibitory activity. However, biosynthetic and regulatory aspects of CPT biosynthesis so far remain elusive. Production of CPT is also constrained due to unavailability of suitable in vitro experimental system. Contextually, there are two routes for the biosynthesis of MIAs: the mevalonate (MVA) pathway operating in cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. Determination of relative precursor flux through either of these pathways may provide a new vista for manipulating the enhanced CPT production. Results In present study, specific enzyme inhibitors of MVA (lovastatin) and MEP pathways (fosmidomycin) were used to perturb the metabolic flux in N. nimmoniana. Interaction of both these pathways was investigated at transcriptional level by using qRT-PCR and at metabolite level by evaluating secologanin, tryptamine and CPT contents. In fosmidomycin treated plants, highly significant reduction was observed in both secologanin and CPT accumulation in the range 40–57% and 64–71.5% respectively, while 4.61–7.69% increase was observed in tryptamine content as compared to control. Lovastatin treatment showed reduction in CPT (7–11%) and secologanin (7.5%) accumulation while tryptamine registered slight increase (3.84%) in comparison to control. These inhibitor mediated changes were reflected at transcriptional level via altering expression levels of deoxy-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA reductase (HMG). Further, mRNA expression of four more genes downstream to DXR and HMG of MEP and MVA pathways respectively were also investigated. Expression analysis also included secologanin synthase (SLS) and strictosidine synthase (STR) of seco-iridoid pathway. Present investigation also entailed development of an efficient in vitro multiplication system as a precursor to pathway flux studies. Further, a robust Agrobacterium- mediated transformed hairy root protocol was also developed for its amenability for up-scaling as a future prospect. Conclusions Metabolic and transcriptional changes reveal differential efficacy of cytosolic and plastidial inhibitors in context to pathway flux perturbations on seco-iridoid end-product camptothecin. MEP pathway plausibly is the major precursor contributor towards CPT production. These empirical findings allude towards developing suitable biotechnological interventions for enhanced CPT production. Electronic supplementary material The online version of this article (10.1186/s12870-019-1912-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.