Brassica rapa includes various vegetables with high economic value. Among them, green petiole type pakchoi (B. rapa ssp. chinensis) is one of the major vegetables grown in southern China. Compared with other B. rapa varieties, green petiole type pakchoi shows higher level of heat resistance, which is partially derived from the rich epicuticular wax. Here we sequence a high-quality genome of green petiole type pakchoi, which has been widely used as the parent in breeding. Our results reveal that LTR-RT insertion plays critical roles in promoting the genome expansion and transcriptional diversity of pakchoi genes through preferential insertions, particularly in cuticle biosynthetic genes. After the whole-genome triplication (WGT), over-retained pakchoi genes escape stringent selection pressure, among which a set of cuticle related genes are retained. Using bulked-segregant analysis (BSA) analysis of a heat-resistant pakchoi cultivar, we identify a frame-shift deletion across the third exon and the subsequent intron of BrcCER1 in candidate regions. Using Nanopore long-read sequencing, we analyze the full-length transcriptome of two pakchoi cultivars with opposite sensitivity to high temperature. We find that heat resistant pakchoi cultivar can mitigate heat caused leaf damage by activating unfolded protein response, as well as inhibiting chloroplast development and energy metabolism, which are presumably mediated by both transcriptional regulation and splicing factors. Our study provides valuable resources for Brassica functional genomics and breeding research, and deepens our understanding of plant stress resistance.
As a widely cultivated vegetable in China and Southeast Asia, the breeding of non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) is widespread; more than 400 varieties have been granted new plant variety rights (PVRs) in China. Distinctness is one of the key requirements for the granting of PVRs, and molecular markers are widely used as a robust supplementary method for similar variety selection in the distinctness test. Although many genome-wide molecular markers have been developed, they have not all been well used in variety identification and tests of distinctness of non-heading Chinese cabbage. In this study, by using 423 non-heading Chinese cabbage varieties collected from different regions of China, 287 simple sequence repeat (SSR) markers were screened for polymorphisms, and 23 core markers were finally selected. The polymorphic information content (PIC) values of the 23 SSR markers ranged from 0.555 to 0.911, with an average of 0.693, and the average number of alleles per marker was 13.65. Using these 23 SSR markers, 418 out of 423 varieties could be distinguished, with a discrimination rate of 99.994%. Field tests indicated that those undistinguished varieties were very similar and could be further distinguished by a few morphological characteristics. According to the clustering results, the 423 varieties could be divided into three groups: pak-choi, caitai, and tacai. The similarity coefficient between the SSR markers and morphological characteristics was moderate (0.53), and the efficiency of variety identification was significantly improved by using a combination of SSR markers and morphological characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.