In this paper, the heteroclinic bifurcation problem with real eigenvalues and two inclination-flips is investigated in a four-dimensional reversible system. We perform a detailed study of this case by using the method originally established in the papers "Problems in Homoclinic Bifurcation with Higher Dimensions" and "Bifurcation of Heteroclinic Loops," and obtain fruitful results, such as the existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic loops, R-symmetric homoclinic orbit and R-symmetric periodic orbit. The double R-symmetric homoclinic bifurcation (i.e., two-fold R-symmetric homoclinic bifurcation) for reversible heteroclinic loops is found, and the existence of infinitely many R-symmetric periodic orbits accumulating onto a homoclinic orbit is demonstrated. The relevant bifurcation surfaces and the existence regions are also located.
This paper introduces the global dynamics of an SIS model with bilinear incidence rate and saturated treatment function. The treatment function is a continuous and differential function which shows the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. Sufficient conditions for the existence and global asymptotic stability of the disease-free and endemic equilibria are given in this paper. The first Lyapunov coefficient is computed to determine various types of Hopf bifurcation, such as subcritical or supercritical. By some complex algebra, the Bogdanov-Takens normal form and the three types of bifurcation curves are derived. Finally, mathematical analysis and numerical simulations are given to support our theoretical results.
Considering stochastic perturbations of white and color noises, we introduce the Markov switched stochastic Nicholson-type delay system with patch structure. By constructing a traditional Lyapunov function we show that solutions of the addressed system are not only positive, but also do not explode to infinity in finite time and, in fact, are ultimately bounded. Then we estimate its ultimate boundedness, moment, and Lyapunov exponent. Finally, we present an example of numerical simulations to verify theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.