We consider bandwidth matrix selection for kernel density estimators (KDEs) of density level sets in R d , d ≥ 2. We also consider estimation of highest density regions, which differs from estimating level sets in that one specifies the probability content of the set rather than specifying the level directly. This complicates the problem. Bandwidth selection for KDEs is well studied, but the goal of most methods is to minimize a global loss function for the density or its derivatives. The loss we consider here is instead the measure of the symmetric difference of the true set and estimated set. We derive an asymptotic approximation to the corresponding risk. The approximation depends on unknown quantities which can be estimated, and the approximation can then be minimized to yield a choice of bandwidth, which we show in simulations performs well. We provide an R package lsbs for implementing our procedure. *
We develop a new method to fit the multivariate response linear regression model that exploits a parametric link between the regression coefficient matrix and the error covariance matrix. Specifically, we assume that the correlations between entries in the multivariate error random vector are proportional to the cosines of the angles between their corresponding regression coefficient matrix columns, so as the angle between two regression coefficient matrix columns decreases, the correlation between the corresponding errors increases. We highlight two models under which this parameterization arises: a latent variable reduced-rank regression model and the errors-in-variables regression model. We propose a novel non-convex weighted residual sum of squares criterion which exploits this parameterization and admits a new class of penalized estimators. The optimization is solved with an accelerated proximal gradient descent algorithm. Our method is used to study the association between microRNA expression and cancer drug activity measured on the NCI-60 cell lines. An R package implementing our method, MCMVR, is available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.