Background Salinity is a worldwide factor limiting the agricultural production. Cotton is an important cash crop; however, its yield and product quality are negatively affected by soil salinity. Use of nanomaterials such as cerium oxide nanoparticles (nanoceria) to improve plant tolerance to stress conditions, e.g. salinity, is an emerged approach in agricultural production. Nevertheless, to date, our knowledge about the role of nanoceria in cotton salt response and the behind mechanisms is still rare. Results We found that PNC (poly acrylic acid coated nanoceria) helped to improve cotton tolerance to salinity, showing better phenotypic performance, higher chlorophyll content (up to 68% increase) and biomass (up to 38% increase), and better photosynthetic performance such as carbon assimilation rate (up to 144% increase) in PNC treated cotton plants than the NNP (non-nanoparticle control) group. Under salinity stress, in consistent to the results of the enhanced activities of antioxidant enzymes, PNC treated cotton plants showed significant lower MDA (malondialdehyde, up to 44% decrease) content and reactive oxygen species (ROS) level such as hydrogen peroxide (H2O2, up to 79% decrease) than the NNP control group, both in the first and second true leaves. Further experiments showed that under salinity stress, PNC treated cotton plants had significant higher cytosolic K+ (up to 84% increase) and lower cytosolic Na+ (up to 77% decrease) fluorescent intensity in both the first and second true leaves than the NNP control group. This is further confirmed by the leaf ion content analysis, showed that PNC treated cotton plants maintained significant higher leaf K+ (up to 84% increase) and lower leaf Na+ content (up to 63% decrease), and thus the higher K+/Na+ ratio than the NNP control plants under salinity stress. Whereas no significant increase of mesophyll cell vacuolar Na+ intensity was observed in PNC treated plants than the NNP control under salinity stress, suggesting that the enhanced leaf K+ retention and leaf Na+ exclusion, but not leaf vacuolar Na+ sequestration are the main mechanisms behind PNC improved cotton salt tolerance. qPCR results showed that under salinity stress, the modulation of HKT1 but not SOS1 refers more to the PNC improved cotton leaf Na+ exclusion than the NNP control. Conclusions PNC enhanced leaf K+ retention and Na+ exclusion, but not vacuolar Na+ sequestration to enable better maintained cytosolic K+/Na+ homeostasis and thus to improve cotton salt tolerance. Our results add more knowledge for better understanding the complexity of plant-nanoceria interaction in terms of nano-enabled plant stress tolerance. Graphic abstract
We present a combined experimental/theoretical study of Pt n /SiO 2 and Pt n Sn x /SiO 2 (n = 4, 7) model catalysts for the endothermic dehydrogenation of hydrocarbons, using the ethylene intermediate as a model reactant. Mass-selected Pt n clusters were deposited onto amorphous SiO 2 /Si(100) to make the Pt n SiO 2 model catalysts. To produce Pt n Sn x clusters, size-selected Pt n was used to seed selective deposition of Sn on Pt via a self-limiting H 2 / SnCl 4 /H 2 reaction sequence. Model catalysts were analyzed using C 2 D 4 and CO temperature-programmed desorption (TPD), lowenergy ion scattering (ISS), X-ray photoelectron spectroscopy (XPS), plane wave density functional theory (DFT) global optimization combined with a statistical mechanical description of the catalytic interface, and a DFT mechanistic study. Supported pure Pt n clusters are found to be highly active toward dehydrogenation of C 2 D 4 , quickly deactivating due to a combination of carbon deposition and sintering, resulting in loss of accessible Pt sites. Addition of Sn to Pt n clusters results in the complete suppression of C 2 D 4 dehydrogenation and carbon deposition and also stabilizes the clusters against thermal sintering. Theory shows that both systems have thermal access to a multitude of cluster structures and adsorbate configurations that form a statistical ensemble. While Pt 4 /SiO 2 clusters bind ethylene in both di-σ-and π-bonded configurations, Pt 4 Sn 3 /SiO 2 binds C 2 H 4 only in the π mode, with di-σ bonding suppressed by a combination of electronic and geometric features of the PtSn clusters. Dehydrogenation reaction profiles on the accessible cluster isomers were calculated using the climbing image nudged elastic band (CI-NEB) method. Dehydrogenation of diσ-bound ethylene is computed to dominate and is suppressed by Sn addition, in agreement with the experiments. DFT indicates that, after Sn alloying, the barrier for ethane-to-ethylene conversion is lower than that for unwanted ethylene dehydrogenation.
An atomic layer deposition process is used to modify size-selected Pt7/alumina model catalysts by Sn addition, both before and after Pt7 cluster deposition. Surface science methods are used to probe the effects of Sn-modification on the electronic properties, reactivity, and morphology of the clusters. Sn addition, either before or after cluster deposition, is found to strongly affect the binding properties of a model alkene, ethylene, changing the number and type of binding sites, and suppressing decomposition leading to carbon deposition and poisoning of the catalyst. Density functional theory on a model system, Pt4Sn3/alumina, shows that the Sn and Pt atoms are mixed, forming alloy clusters with substantial electron transfer from Sn to Pt. The presence of Sn also makes all the thermally accessible structures closed shell, such that ethylene binds only by π-bonding to a single Pt atom. The Sn-modified catalysts are quite stable in repeated ethylene temperature programmed reaction experiments, suggesting that the presence of Sn also reduces the tendency of the sub-nano clusters to undergo thermal sintering.
An atomic layer deposition process is used to modify size-selected Pt7/alumina model catalysts by Sn addition, both before and after Pt7 cluster deposition. Surface science methods are used to probe the effects of Sn-modification on the electronic properties, reactivity, and morphology of the clusters. Sn addition, either before or after cluster deposition, is found to strongly affect the binding properties of a model alkene, ethylene, changing the number and type of binding sites, and suppressing decomposition leading to carbon deposition and poisoning of the catalyst. Density functional theory on a model system, Pt4Sn3/alumina, shows that the Sn and Pt atoms are mixed, forming alloy clusters with substantial electron transfer from Sn to Pt. The presence of Sn also makes all the thermally accessible structures closed shell, such that ethylene binds only by π-bonding to a single Pt atom. The Sn-modified catalysts are quite stable in repeated ethylene temperature programmed reaction experiments, suggesting that the presence of Sn also reduces the tendency of the sub-nano clusters to undergo thermal sintering.
Salinity is an issue impairing crop production across the globe. Under salinity stress, besides the osmotic stress and Na+ toxicity, ROS (reactive oxygen species) overaccumulation is a secondary stress which further impairs plant performance. Chloroplasts, mitochondria, the apoplast, and peroxisomes are the main ROS generation sites in salt-stressed plants. In this review, we summarize ROS generation, enzymatic and non-enzymatic antioxidant systems in salt-stressed plants, and the potential for plant biotechnology to maintain ROS homeostasis. Overall, this review summarizes the current understanding of ROS homeostasis of salt-stressed plants and highlights potential applications of plant nanobiotechnology to enhance plant tolerance to stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.