Short-term wind power forecasting is crucial for updating the wind power trading strategy, equipment protection and control regulation. To solve the difficulty surrounding the instability of the statistical model and the time-consuming nature of the physical model in short-term wind power forecasting, two innovative wind field reconstruction methods combining CFD and a reduced-order model were developed. In this study, POD and Tucker decomposition were employed to obtain the spatial–temporal information correlation of 2D and 3D wind fields, and their inverse processes were combined with sparse sensing to reconstruct multi-dimensional unsteady wind fields. Simulation and detailed discussion were performed to verify the practicability of the proposed algorithms. The simulation results indicate that the wind speed distributions could be reconstructed with reasonably high accuracy (where the absolute velocity relative error was less than 0.8%) using 20 sensors (which only accounted for 0.04% of the total data in the 3D wind field) based on the proposed algorithms. The factors influencing the results of reconstruction were systematically analyzed, including all-time steps, the number of basis vectors and 4-mode dimensions, the diversity of CFD databases, and the reconstruction time. The results indicated that the reconstruction time could be shortened to the time interval of data acquisition to synchronize data acquisition with wind field reconstruction, which is of great significance in the reconstruction of unsteady wind fields. Although there are still many studies to be carried out to achieve short-term predictions, both unsteady reconstruction methods proposed in this paper enable a new direction for short-term wind field prediction.
Short-term wind forecasting is critical for the dispatch, controllability and stability of a power grid. As a challenging but indispensable work, short-term wind forecasting has attracted considerable attention from researchers. In this paper, Principal Component Analysis (PCA) is applied to Computational Fluid Dynamics (CFD) calculation results for feature extraction and then combined with sparse sensing to achieve the rapid reconstruction of a three-dimensional wind speed field and pressure field. Before reconstruction, the relationship between the reconstruction error and the noise level, and a number of the basis vectors is systematically studied. In the simulation, the wind shear effect is introduced into the inlet boundary condition, and the reconstruction errors of the uniform inlet are 0.21% and 6.46%, respectively, while the maximum reconstruction errors including the wind shear effect are 1.21% and 6.41%, respectively, which verifies the feasibility of applying a PCA-based reconstruction algorithm to a 3D wind field reconstruction. In addition, to solve the time-consuming problem of most optimization algorithms based on a brute-force combinatorial search, an innovative optimization algorithm based on the QR pivoting is investigated to determine the sparse sensor placements. Simulation results show that when the number of sensors is equal to the number of basis vectors, the error of random placement is even 20 times of the optimal placement, which illustrates that QR pivoting is a powerful optimization algorithm. Finally, a wind tunnel experiment of velocity field reconstruction is performed, to verify the practicability of the optimized method based on QR pivoting, and the results indicate that a reasonably high accuracy 3D wind field can be obtained with only 10 sensors (the error of most points is less than 5% and the minimum error is only 0.74%). In general, the proposed algorithm incorporating PCA, sparse sensing and QR pivoting can quickly reconstruct the 3D velocity and pressure fields with reduced measurement costs, which is of great significance for the development of short-term wind forecasting methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.