In this paper, the effect of nano-silica on the autogenous shrinkage, hydration heat, compressive strength hydration products of Ultra-High Strength Concrete (UHSC) is studied. The water/binder ratio (w/b) of UHSC is 0.2. The nano-silica replaces 2% and 4% of the mass fraction of the cement in UHSCs, respectively. A new instrument was developed to simultaneously measure the autogenous shrinkage, internal relative humidity, and internal temperature of UHSC. The following results were obtained from the analysis of the experimental data: (1) The trends in the autogenous shrinking of UHSC can be divided into two stages, which are the variable temperature stage and the room temperature stage. The dividing point between the two stages occurs at the age of approximately 2 days. During the room temperature stage, the internal relative humidity and autogenous shrinkage showed a good linear relationship. (2) The compressive strength of UHSC increased significantly with the increase of nano-silica content at 3 days, 7 days, and 28 days. (3) The total accumulated heat of UHSC increased during the 72 h, with the increasing of nano-silica content. (4) The XRD data at the age of 28 days showed that the Ca(OH)2 peaks of nS2 and nS4 have a tendency to weaken due to the pozzolanic reaction, compared with the peak of nS0.
Ultra-high-strength paste (UHSP) combined with nanomaterials has been extensively studied. However, the research on nano-ZrO2 is limited. In this study, UHSP with various nano-ZrO2 contents is analyzed. The motivation of this study is to clarify the effects of nano-ZrO2 on the hydration products, strength, autogenous shrinkage, and hydration heat of UHSPs. The water-to-binder ratio (w/b) of the specimens is 0.2. The nano-ZrO2 content is 0, 1.5, and 3 wt.%. The strength is measured at the age of 3, 7, and 28 days. The hydration heat is measured from the mixing stage to 3 days. The hydration products are analyzed by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The autogenous shrinkage is measured from the mixing stage for 7 days using a new experimental device. The new experimental device can measure autogenous shrinkage, internal relative humidity, and internal temperature simultaneously. The following conclusions can be drawn based on the experimental studies: (1) Two stages were noticed in the autogenous shrinkage of UHSPs: a variable-temperature stage and a room-temperature stage. The cut-off point of these two stages occurred in roughly 1.5 days. Furthermore, in the room-temperature stage, there was a straight-line relationship between the autogenous shrinkage and internal relative humidity. (2) With the increase of the nano-ZrO2 amount, the compressive strength at 3 days, 7 days, and 4 weeks increased. (3) With the nano-ZrO2 increasing, the flow decreased. (4) With the nano-ZrO2 increasing, the hydration heat increased due to the physical nucleation effect of the nano-ZrO2. Furthermore, the nano-ZrO2 used in this study was chemically inert and did not take part in the cement hydration reaction based on the XRD, differential thermal, and TG data. This paper is of great significance for the development of high-strength cementitious materials doped with nano-ZrO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.