Twin‐screw extrusion processes are commonly refined on laboratory‐scale extruders then scaled‐up to manufacturing systems. When using twin‐screw extrusion to compound filler into a polymer, the dispersion of the filler must be considered during scale‐up. In this work, two scale‐up methods are evaluated for how accurately they scale dispersion as measured by the Residence Stress Distribution, an experimental method that quantifies stress developed in a twin‐screw extruder. The first scale‐up method evaluated is the industry‐standard scaling based on maintaining equivalent volumetric flow rate across extruder sizes. Volumetric scaling is compared to a second, novel scale‐up method, the percent drag flow rule, which maintains the same degree of fill in the strongest dispersive screw elements on all extruder sizes. Both scale‐up rules have been used to scale between three extruder sizes and have been evaluated for how accurately the larger extruders recreate the dispersive mixing of the smallest machine. Results indicate that the percent drag flow scale‐up more accurately maintains dispersive mixing behavior than the volumetric scaling. Furthermore, percent drag flow scale‐up resulted in all three extruder sizes behaving similarly to changes in operating conditions. These results indicate that percent drag flow scale‐up is a valid technique to scale real industrial processes. POLYM. ENG. SCI., 57:345–354, 2017. © 2016 Society of Plastics Engineers
Twin-screw polymer extrusion has shown increased utility for creating composite materials. However, in order to achieve the desired product properties, sufficient mixing is essential. Dispersive mixing, or the breaking-up of particle agglomerates, is critical to create filled compounds with the required material properties. In a twin-screw compounding process, the Residence Stress Distribution (RSD) has been used to quantify the dispersive mixing induced by the stresses in the polymer melt. These stresses are quantified by the percent break-up of stress-sensitive polymeric beads. It was found that the amount of material that experiences the critical stress is a function of the operating conditions of screw speed and specific throughput [1]. The quantification of dispersive mixing allows for better control of a compounding process and can be used to design new processes. During the development of a new compounding process, screw geometries and operating conditions are often refined on a laboratory-scale extruder and then scaled up to a manufacturing level. Scale-up rules are used to translate the operating conditions of a process to different sizes of extruders. In a compounding process, the goal when scaling-up is to maintain the same material properties on both scales by achieving equivalent mixing. The RSD methodology can be used to evaluate the effectiveness of scale-up rules by comparison between two or more scales. This paper will demonstrate the utility of the RSD in evaluation of two unique scale-up rules. Conventional industry practice is based on the volumetric flow comparison between extruders. The proposed approach demonstrates that in order to maintain equivalent dispersive mixing between different sizes of extruders, the degree of fill, or the percent drag flow (%DF), must be kept equivalent in the primary mixing region. The effectiveness of both rules has been evaluated by experimental application of the RSD methodology. A design of experiment approach was used to generate predictive equations for each scale-up rule that were compared to the behavior of the original small-scale extruder. Statistical comparison of the two scale-up rules showed that the %DF rule predicted operating conditions on the large-scale extruder that produced percent break-up behavior more similar to the small-scale behavior. From these results, it can be concluded that the %DF scale-up rule can be used to accurately scale operating conditions between different-sized extruders to ensure similar dispersive mixing between two processes. This will allow for greater accuracy when recreating the material properties of a small-scale twin-screw compounding process on a larger, mass production machine.
There is a great interest in using micro and nano scale ingredients as fillers to create composites with enhanced physical properties. This thesis research explores the improvements these fillers offer with focus on combining both micro and nano ingredients to make multi-scale polymer composites. This investigation reveals the interplay of ingredient mixing, microstructural evolution, and processing conditions and characterizes the improvements of thermal and mechanical properties. This data is used to develop fundamental processing-structure-property relationships of these multi-scale composites across different concentrations of microscale and nanoscale ingredients and processing conditions in order to optimize their development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.