The purpose of this study was to evaluate the microhardness of resin-based materials polymerized with a LED (light-emitting diode) light-curing unit (LCU) and a halogen LCU. Twenty cylindrical specimens (3.0 mm in diameter and 2.0 mm high) were prepared for each tested material (Z100, Definite and Dyract). Specimens were light-cured with two LCUs (Ultraled and Curing Light 2500) for either 40 or 60 s on their top surfaces. Hardness was measured on top and bottom surfaces of each specimen. Statistical analysis was done by ANOVA and Tukey's test (p<0.05). There was no significant difference in hardness between LED LCU and halogen LCU for Z100 and Dyract on top surface. Conversely, lower hardness was recorded when Definite was light-cured with the LED LCU than with the halogen lamp. On bottom surface, hardness was significantly lower for all materials light-cured with LED LCU. Z100 was harder than Dyract and Definite regardless of the light curing unit. There was no significant difference in hardness between the exposure times on top surface. Higher hardness was obtained when the materials were light-cured for 60 s on bottom surface. The tested LED was not able to produce the same microhardness of resin-based materials as the halogen LCU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.