Endocytosis of cell surface receptors is an important regulatory event in signal transduction. The transforming growth factor beta (TGF-beta) superfamily signals to the Smad pathway through heteromeric Ser-Thr kinase receptors that are rapidly internalized and then downregulated in a ubiquitin-dependent manner. Here we demonstrate that TGF-beta receptors internalize into both caveolin- and EEA1-positive vesicles and reside in both lipid raft and non-raft membrane domains. Clathrin-dependent internalization into the EEA1-positive endosome, where the Smad2 anchor SARA is enriched, promotes TGF-beta signalling. In contrast, the lipid raft-caveolar internalization pathway contains the Smad7-Smurf2 bound receptor and is required for rapid receptor turnover. Thus, segregation of TGF-beta receptors into distinct endocytic compartments regulates Smad activation and receptor turnover.
The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.