The rapid increase in genomic information requires new techniques to infer protein function and predict protein-protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases.
AKT was originally identified as a proto-oncogene with a pleckstrin homology and Ser/Thr protein kinase domains. Recent studies revealed that AKT regulates a variety of cellular functions including cell survival, cell growth, cell differentiation, cell cycle progression, transcription, translation, and cellular metabolism. To clarify the substrate specificity of AKT, we have used an oriented peptide library approach to determine optimal amino acids at positions N-terminal and C-terminal to the site of phosphorylation. The predicted optimal peptide substrate (Arg-Lys-Arg-Xaa-Arg-Thr-Tyr-Ser*-PheGly where Ser* is the phosphorylation site) has similarities to but is distinct from optimal substrates that we previously defined for related basophilic protein kinases such as protein kinase A, Ser/Arg-rich kinases, and protein kinase C family members. The positions most important for high V max /K m ratio were Arg-3>Arg-5>Arg-7. The substrate specificity of AKT was further investigated by screening a GEX phage HeLa cell cDNA expression library. All of the substrates identified by this procedure contained Arg-Xaa-Arg-Xaa-Xaa-(Ser/ Thr) motifs and were in close agreement with the motif identified by peptide library screening. The results of this study should help in prediction of likely AKT substrates from primary sequences.The AKT protein kinase (also referred to as protein kinase B or Rac-protein kinase) was initially identified as an acute transforming component of the AKT8 virus isolated from a murine T cell lymphoma (1, 2). The catalytic domain of AKT is closely related to those of protein kinase C (PKC) 1 and protein kinase A (PKA) family members (3-5). The kinase activity of AKT is stimulated by a variety of growth factors (6), cytokines, chemokines, heat shock, hyperosmolarity, hypoxia, integrin engagement, and T cell receptor (7-15). The pleckstrin homology domain of AKT binds to the lipid products of phosphoinositide 3Ј-kinase (PI3K) and thereby mediates recruitment to the membrane in response to PI3K (6,[16][17][18] Given the importance of AKT in a variety of cellular functions, numerous laboratories have sought in vivo substrates of AKT that could explain its various roles in signaling. However, identification of in vivo substrates of protein kinases is complicated by the existence of protein kinase cascades. Thus, even if in vivo phosphorylation of a specific site on a protein is blocked by disrupting the function of a single protein kinase, one cannot conclude that the kinase of interest directly phosphorylates the site. A downstream kinase could be responsible. Support for direct phosphorylation can be obtained by demonstrating that the site is preferentially phosphorylated by the kinase of interest in a pure in vitro assay. Knowledge of the optimal motif of a protein kinase can also accelerate discovery of targets by allowing prediction of sites from a global search of genome sequences or by a restricted search of candidate proteins. Ultimately, such predictions must be tested by both in vivo and in vitro ...
In neuropsychiatry, animal studies demonstrating causal effects of environmental manipulations relevant to human aetiology on behaviours relevant to human psychopathologies are valuable. Such valid models can improve understanding of aetio-pathophysiology and preclinical discovery and development of new treatments. In depression, specific uncontrollable stressful life events are major aetiological factors, and subsequent generalized increases in fearfulness, helplessness and fatigue are core symptoms or features. Here we exposed adult male C57BL/6 mice to 15-day psychosocial stress with loss of social control but minimal physical wounding. One cohort was assessed in a 3-day test paradigm of motor activity, fear conditioning and 2-way avoid-escape behaviour on days 16-18, and a second cohort was assessed in a treadmill fatigue paradigm on days 19 and 29, followed by the 3-day paradigm on days 30-32. All tests used a physical aversive stimulus, namely mild, brief electroshocks. Socially stressed mice displayed decreased motor activity, increased fear acquisition, decreased 2-way avoid-escape responding (increased helplessness) and increased fatigue. They also displayed increased plasma TNF and spleen hypertrophy, and adrenal hypertrophy without hyper-corticoidism. In a third cohort, psychosocial stress effects on brain gene expression were assessed using next generation sequencing. Gene expression was altered in pathways of inflammation and G-protein coupled receptors in prefrontal cortex and amygdala; in the latter, expression of genes important in dopamine function were de-regulated including down-regulated Drd2, Adora2a and Darpp-32. This model can be applied to identify targets for treating psychopathologies such as helplessness or fatigue, and to screen compounds/biologics developed to act at these targets. AbstractIn neuropsychiatric research, animal studies that demonstrate causal effects of environmental manipulations relevant to human aetiological factors on emotional and cognitive behaviours relevant to human psychopathologies are valuable. Such valid animal models can be useful for improved understanding of aetio-pathophysiology and preclinical discovery and development of new treatments. In depression, specific uncontrollable stressful life events are major aetiological factors, and subsequent generalized increases in fearfulness, helplessness and fatigue are core psychopathology symptoms or features. In the present study we exposed adult male C57BL/6 mice to an environmental manipulation of 15-day psychosocial stress with loss of social control but with minimal physical wounding. One cohort of stressed and control mice was assessed in a novel 3-day test paradigm of motor activity, fear conditioning and 2-way avoid-escape behaviour on days 16-18, and a second cohort was assessed in a treadmill fatigue paradigm on days 19 and 29, followed by the 3-day paradigm on days 30-32. All tests used a physical aversive stimulus, namely mild, brief electroshocks. The socially stressed mice displayed dec...
Assessment of the network of toxicity pathways by Omics technologies and bioinformatic data processing paves the road toward a new toxicology for the twenty-first century. Especially, the upstream network of responses, taking place in toxicant-treated cells before a point of no return is reached, is still little explored. We studied the effects of the model neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) by a combined metabolomics (mass spectrometry) and transcriptomics (microarrays and deep sequencing) approach to provide unbiased data on earliest cellular adaptations to stress. Neural precursor cells (LUHMES) were differentiated to homogeneous cultures of fully postmitotic human dopaminergic neurons, and then exposed to the mitochondrial respiratory chain inhibitor MPP+ (5 μM). At 18–24 h after treatment, intracellular ATP and mitochondrial integrity were still close to control levels, but pronounced transcriptome and metabolome changes were seen. Data on altered glucose flux, depletion of phosphocreatine and oxidative stress (e.g., methionine sulfoxide formation) confirmed the validity of the approach. New findings were related to nuclear paraspeckle depletion, as well as an early activation of branches of the transsulfuration pathway to increase glutathione. Bioinformatic analysis of our data identified the transcription factor ATF-4 as an upstream regulator of early responses. Findings on this signaling pathway and on adaptive increases of glutathione production were confirmed biochemically. Metabolic and transcriptional profiling contributed complementary information on multiple primary and secondary changes that contribute to the cellular response to MPP+. Thus, combined ‘Omics' analysis is a new unbiased approach to unravel earliest metabolic changes, whose balance decides on the final cell fate.
Gene functionality is closely connected to its expression specificity across tissues and cell types. RNA-Seq is a powerful quantitative tool to explore genome wide expression. The aim of this study is to provide a comprehensive RNA-Seq dataset across the same 13 tissues for mouse and rat, two of the most relevant species for biomedical research. The dataset provides the transcriptome across tissues from three male C57BL6 mice and three male Han Wistar rats. We also describe our bioinformatics pipeline to process and technically validate the data. Principal component analysis shows that tissue samples from both species cluster similarly. We show by comparative genomics that many genes with high sequence identity with respect to their human orthologues also have a highly correlated tissue distribution profile and are in agreement with manually curated literature data for human. In summary, the present study provides a unique resource for comparative genomics and will facilitate the analysis of tissue specificity and cross-species conservation in higher organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.