Leading commercial electronic cigarettes were tested to determine bulk composition. The e-cigarettes and conventional cigarettes were evaluated using machine-puffing to compare nicotine delivery and relative yields of chemical constituents. The e-liquids tested were found to contain humectants, glycerin and/or propylene glycol, (⩾75% content); water (<20%); nicotine (approximately 2%); and flavor (<10%). The aerosol collected mass (ACM) of the e-cigarette samples was similar in composition to the e-liquids. Aerosol nicotine for the e-cigarette samples was 85% lower than nicotine yield for the conventional cigarettes. Analysis of the smoke from conventional cigarettes showed that the mainstream cigarette smoke delivered approximately 1500times more harmful and potentially harmful constituents (HPHCs) tested when compared to e-cigarette aerosol or to puffing room air. The deliveries of HPHCs tested for these e-cigarette products were similar to the study air blanks rather than to deliveries from conventional cigarettes; no significant contribution of cigarette smoke HPHCs from any of the compound classes tested was found for the e-cigarettes. Thus, the results of this study support previous researchers' discussion of e-cigarette products' potential for reduced exposure compared to cigarette smoke.
Exhaled aerosols were collected following the use of two leading U.S. commercial electronic cigarettes (e-cigarettes) and a conventional cigarette by human subjects and analyzed for phenolics, carbonyls, water, glycerin and nicotine using a vacuum-assisted filter pad capture system. Exhaled breath blanks were determined for each subject prior to each product use and aerosol collection session. Distribution and mass balance of exhaled e-cigarette aerosol composition was greater than 99.9% water and glycerin, and a small amount (<0.06%) of nicotine. Total phenolic content in exhaled e-cigarette aerosol was not distinguishable from exhaled breath blanks, while total phenolics in exhaled cigarette smoke were significantly greater than in exhaled e-cigarette aerosol and exhaled breaths, averaging 66 µg/session (range 36 to 117 µg/session). The total carbonyls in exhaled e-cigarette aerosols were also not distinguishable from exhaled breaths or room air blanks. Total carbonyls in exhaled cigarette smoke was significantly greater than in exhaled e-cigarette aerosols, exhaled breath and room air blanks, averaging 242 µg/session (range 136 to 352 µg/session). These results indicate that exhaled e-cigarette aerosol does not increase bystander exposure for phenolics and carbonyls above the levels observed in exhaled breaths of air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.