This paper introduces the open-source Graphite distributed parallel multicore simulator infrastructure. Graphite is designed from the ground up for exploration of future multicore processors containing dozens, hundreds, or even thousands of cores. It provides high performance for fast design space exploration and software development for future processors. Several techniques are used to achieve this performance including: direct execution, multi-machine distribution, analytical modeling, and lax synchronization. Graphite is capable of accelerating simulations by leveraging several machines. It can distribute simulation of an off-the-shelf threaded application across a cluster of commodity Linux machines with no modification to the source code. It does this by providing a single, shared address space and consistent single-process image across machines. Graphite is designed to be a simulation framework, allowing different component models to be easily replaced to either model different architectures or tradeoff accuracy for performance.We evaluate Graphite from a number of perspectives and demonstrate that it can simulate target architectures containing over 1000 cores on ten 8-core servers. Performance scales well as more machines are added with near linear speedup in many cases. Simulation slowdown is as low as 41× versus native execution for some applications.The Graphite infrastructure and existing models will be released as open-source software to allow the community to simulate their own architectures and extend and improve the framework.
Abstract-With the advent of many-core chips that place substantial demand on the NoC, photonics has been investigated as a promising alternative to electrical NoCs. While numerous opto-electronic NoCs have been proposed, their evaluations tend to be based on fixed numbers for both photonic and electrical components, making it difficult to co-optimize. Through our own forays into opto-electronic NoC design, we observe that photonics and electronics are very much intertwined, reflecting a strong need for a NoC modeling tool that accurately models parameterized electronic and photonic components within a unified framework, capturing their interactions faithfully. In this paper, we present a tool, DSENT, for design space exploration of electrical and opto-electrical networks. We form a framework that constructs basic NoC building blocks from electrical and photonic technology parameters. To demonstrate potential use cases, we perform a network case study illustrating data-rate tradeoffs, a comparison with scaled electrical technology, and sensitivity to photonics parameters.
One of the most versatile composers of his generation, Orlando Gibbons came from a family of organists. He was the first organist of the Chapel Royal, London and served as virginalist to the early Stuart kings and organist of Westminster Abbey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.