The use of controlled transdermal delivery of acyclovir (ACV) in the treatment of cutaneous herpes simplex virus type 1 infections in hairless mice was investigated. Using an in vivo animal model (A. Gonsho, et al. Int. J. Pharm. 65:183-194 (1990)) made it possible to quantify both, the topical and the systemic antiviral efficacy of ACV transdermal patches as a function of the drug delivery rate of the patches. Drug delivery rates required to attain systemic efficacy were found to be higher than the rates required to attain the same magnitude of topical efficacy. The ACV concentrations in the basal cell layer of the epidermis for 50% topical efficacy and 50% systemic efficacy were estimated. The basal epidermis layer was considered to be the site of antiviral drug activity (skin target site). Systemic plasma levels were obtained from pharmacokinetic studies and were used to estimate the ACV concentration achieved systemically in the basal epidermis layer. A computational model for drug permeation across skin was employed to estimate the ACV concentration achieved topically in the basal epidermis layer. Equal topical and systemic efficacies were found to correspond to equal drug concentrations at the site of antiviral activity. The length of the effective diffusion pathway of drug molecules in the dermis prior to entering the blood circulation was assumed to be approximately equal to 1/20 of the anatomical dermis thickness because of dermis vascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.