GP. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am J Physiol Cell Physiol 300: C146 -C154, 2011. First published September 22, 2010; doi:10.1152/ajpcell.00195.2010.-A hallmark of many, sometimes life-threatening, inflammatory diseases and disorders is vascular leakage. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell-cell and cell-substrate contacts, soluble mediators, and biomechanical forces. A potentially critical but essentially uninvestigated component mediating these interactions is the stiffness of the substrate to which the endothelial monolayer is adherent. Accordingly, we investigated the extent to which substrate stiffening influences endothelial monolayer disruption and the role of cell-cell and cell-substrate contacts, soluble mediators, and physical forces in that process. Traction force microscopy showed that forces between cell and cell and between cell and substrate were greater on stiffer substrates. On stiffer substrates, these forces were substantially enhanced by a hyperpermeability stimulus (thrombin, 1 U/ml), and gaps formed between cells. On softer substrates, by contrast, these forces were increased far less by thrombin, and gaps did not form between cells. This stiffness-dependent force enhancement was associated with increased Rho kinase activity, whereas inhibition of Rho kinase attenuated baseline forces and lessened thrombin-induced inter-EC gap formation. Our findings demonstrate a central role of physical forces in EC gap formation and highlight a novel physiological mechanism. Integrity of the endothelial monolayer is governed by its physical microenvironment, which in normal circumstances is compliant but during pathology becomes stiffer. contraction; human umbilical vein endothelial cells; permeability; traction force; cell-cell contact; cell-substrate contact; substrate stiffness; Rho kinase; vascular endothelial cadherin; thrombin THE OVERALL INTEGRITY and barrier properties of the endothelial cell (EC) monolayer are governed by three main categories of inputs: cell-cell and cell-substrate contacts, soluble mediators (e.g., thrombin, histamine, spingosphine 1-phosphate, and nitric oxide), and biomechanics (e.g., innate monolayer forces, shear forces, and stretch) (33). In vivo, these inputs are integrated by the EC monolayer to regulate its overall integrity and responses to inflammatory stimuli. Characterizing these inputs and their interrelationships is thus of central importance for understanding vascular biology and inflammation as a whole.A potentially critical, but entirely ignored, component of the EC environment that may influence the aforementioned inputs and their interactions is stiffness of the substrate to which the EC monolayer is adherent. This substrate stiffness varies greatly among diverse physiological settings (12,13,32,59), is enhanced with aging (21, 40), and is exacerbate...
Objective— Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced signaling pathways, but its role has not been clarified. Methods and Results— VEGF induced the activation of RhoA and recruited RhoA to the cell membrane of human ECs. This increase in RhoA activity is necessary for the VEGF-induced reorganization of the F-actin cytoskeleton, as demonstrated by adenoviral transfection of dominant-negative RhoA. Rho kinase mediated this effect of RhoA, as was demonstrated by the use of Y-27632, a specific inhibitor of Rho kinase. Inhibition of Rho kinase prevented the VEGF-enhanced EC migration in response to mechanical wounding but had no effect on basal EC migration. Furthermore, in an in vitro model for angiogenesis, inhibition of either RhoA or Rho kinase attenuated the VEGF-mediated ingrowth of ECs in a 3-dimensional fibrin matrix. Conclusions— VEGF-induced cytoskeletal changes in ECs require RhoA and Rho kinase, and activation of RhoA/Rho kinase signaling is involved in the VEGF-induced in vitro EC migration and angiogenesis.
Background-Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. Methods and Results-We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro-and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysfunction. Indeed, Arg was activated by endothelial stimulation with thrombin, histamine, and vascular endothelial growth factor. Imatinib limited Arg-mediated endothelial barrier dysfunction by enhancing Rac1 activity and enforcing adhesion of endothelial cells to the extracellular matrix. Using mouse models of vascular leakage as proof-of-concept, we found that pretreatment with imatinib protected against vascular endothelial growth factor-induced vascular leakage in the skin, and effectively prevented edema formation in the lungs. In a murine model of sepsis, imatinib treatment (6 hours and 18 hours after induction of sepsis) attenuated vascular leakage in the kidneys and the lungs (24 hours after induction of sepsis). Conclusions-Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment. (Circulation. 2012;126:2728-2738.)
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.