Structured abstract for full paperBackgroundAfter recovery from COVID-19, most patients have anti-SARS-CoV-2 neutralizing antibodies. Their convalescent plasma could be an inexpensive and widely available treatment for COVID-19.MethodsThe Convalescent-plasma-for-COVID (ConCOVID) study was a randomized trial comparing convalescent plasma with standard of care therapy in patients hospitalized for COVID-19 in the Netherlands. Patients were randomized 1:1 and received 300ml of plasma with anti-SARS-CoV-2 neutralizing antibody titers of at least 1:80. The primary endpoint was day-60 mortality and key secondary endpoints were hospital stay and WHO 8-point disease severity scale improvement on day 15.ResultsThe trial was halted prematurely after 86 patients were enrolled. Although symptomatic for only 10 days (IQR 6-15) at the time of inclusion, 53 of 66 patients tested had anti-SARS-CoV-2 antibodies at baseline. A SARS-CoV-2 plaque reduction neutralization test showed neutralizing antibodies in 44 of the 56 (79%) patients tested with median titers comparable to the 115 donors (1:160 vs 1:160, p=0.40). These observations caused concerns about the potential benefit of convalescent plasma in the study population and after discussion with the data safety monitoring board, the study was discontinued. No difference in mortality (p=0.95), hospital stay (p=0.68) or day-15 disease severity (p=0.58) was observed between plasma treated patients and patients on standard of care.ConclusionMost COVID-19 patients already have high neutralizing antibody titers at hospital admission. Screening for antibodies and prioritizing convalescent plasma to risk groups with recent symptom onset will be key to identify patients that may benefit from convalescent plasma. Clinicaltrials.gov: NCT04342182
In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.
Cigarette smoke (CS), the primary risk factor of chronic obstructive pulmonary disease (COPD), leads to pulmonary inflammation through interleukin-1 receptor (IL-1R)I signalling, as determined using COPD mouse models. It is unclear whether interleukin (IL)-1a or IL-1b, activated by the Nlrp3/caspase-1 axis, is the predominant ligand for IL-1RI in CS-induced responses.We exposed wild-type mice (treated with anti-IL-1a or anti-IL-1b antibodies), and IL-1RI knockout (KO), Nlrp3 KO and caspase-1 KO mice to CS for 3 days or 4 weeks and evaluated pulmonary inflammation. Additionally, we measured the levels of IL-1a and IL-1b mRNA (in total lung tissue by RT-PCR) and protein (in induced sputum by ELISA) of never-smokers, smokers without COPD and patients with COPD.In CS-exposed mice, pulmonary inflammation was dependent on IL-1RI and could be significantly attenuated by neutralising IL-1a or IL-1b. Interestingly, CS-induced inflammation occurred independently of IL-1b activation by the Nlrp3/caspase-1 axis. In human subjects, IL-1a and IL-1b were significantly increased in total lung tissue and induced sputum of patients with COPD, respectively, compared with never-smokers.These results suggest that not only IL-1b but also IL-1a should be considered as an important mediator in CS-induced inflammation and COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.