Some reports of supernova (SN) discoveries turn out not to be true core-collapse explosions. One such case was SN 2009ip, which was recognised to be the eruption of a luminous blue variable (LBV) star. This source had a massive (50-80 M ⊙ ), hot progenitor star identified in pre-explosion data, it had documented evidence of preoutburst variability, and it was subsequently discovered to have a second outburst in 2010. In 2012, the source entered its third known outburst. Initial spectra showed the same narrow-line profiles as before, suggesting another LBV-like eruption. We present new photometry and spectroscopy of SN 2009ip, indicating that the 2012 outburst transitioned into a genuine SN explosion. The most striking aspect of these data is that unlike any previous episodes, the spectrum developed Balmer lines with very broad P-Cygni profiles characteristic of normal Type II supernovae (SNe II), in addition to overlying narrow emission components. The emission lines exhibit unprecedented (for any known nonterminal LBV-like eruption) full width at half-maximum intensity values of ∼ 8000 km s −1 , while the absorption components seen just before the main brightening had blue wings extending out to −13,000 km s −1 . These velocities are typical of core-collapse SN explosions, but have never been associated with emission lines from a nonterminal LBV-like eruption. SN 2009ip is the first object to have both a known massive blue progenitor star and LBV-like eruptions with accompanying spectra observed a few years prior to becoming a SN. Immediately after the broad lines first appeared, the peak absolute magnitude of M V ≈ −14.5 was fainter than that of normal SNe II. However, after a brief period of fading, the source quickly brightened again to M R = −17.5 mag in ∼ 2 days, suggesting a causal link to the prior emergence of the broad-line spectrum. Once the bright phase began, the broad lines mostly disappeared, and the spectrum resembled the early optically thick phases of luminous SNe IIn. The source reached a peak brightness of −18 mag about 2 weeks later, after which broad emission lines again developed in the spectrum as the source faded. We conclude that the most recent 2012 outburst of SN 2009ip was the result of a true core-collapse SN IIn that occurred when the progenitor star was in an LBV-like outburst phase, and where the SN was initially faint and then rapidly brightened due to interaction with circumstellar material. The pulsational pair instability, LBV-like eruptions, or other instabilities due to late nuclear burning phases in massive stars may have caused the multiple pre-SN eruptions.
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (3 SN 1991bg-like, 3 SN 1991T-like, 4 SNe Iax, 2 peculiar, and 3 super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 d, and the median first observed epoch is ∼4.6 d before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our data set. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardizing SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.
We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search (LOSS) follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, two peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, one peculiar SN Ic, ten SNe Ic-BL, 15 SNe IIb, one ambiguous SN IIb/Ib/c, and two superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modeling multiband light curves, we find that SNe Ic tend to have lower ejecta masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.