In this paper, without requiring the complete continuity of integral operators and the existence of upper-lower solutions, by means of the sum-type mixed monotone operator fixed point theorem based on the cone P h , we investigate a kind of p-Laplacian differential equation Riemann-Stieltjes integral boundary value problem involving a tempered fractional derivative. Not only the existence and uniqueness of positive solutions are obtained, but also we can construct successively sequences for approximating the unique positive solution. As an application of our fundamental aims, we offer a realistic example to illustrate the effectiveness and practicability of the main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.