We evaluate the energy conversion efficiency of an electrical exploding foil accelerator that accelerates a thin dielectric foil (called the flyer) to more than 1 km/s, which is propelled by electrically exploded bridge material. The effective flyer mass ejected from the accelerator is estimated by impulse measurements obtained using a gravity pendulum as well as by time-resolving flyer velocity measurements obtained using a photonic Doppler velocimetry system. For two different bridge sizes (0.2 and 0.4 mm), the flyer velocity and impulse increase with the input energy at the bridge section. The maximum flyer velocity and impulse, that is, 4.0 km/s and 67 µN s, respectively, are obtained by supplying 0.33 J of input energy. Upon increasing the input energy, the effective flyer mass also increases and exceeds the designed-bridge mass for both bridge sizes. The energy conversion efficiency from input electrical energy to flyer kinetic energy is calculated based on the effective flyer mass, velocity, and input energy. Both bridge sizes show comparable efficiencies: 27% and 30% for 0.2 and 0.4 mm bridges, respectively. The efficiency increases with increasing specific input energy at least up to 15 MJ/kg for the 0.4 mm bridge, whereas the efficiency of the 0.2 mm bridge above 30 MJ/kg decreases. This is owing to the excessively high input energy density in the 0.2 mm bridge, which causes the effective flyer mass to increase by including surrounding materials. These results indicate that the specific input energy should be optimized for obtaining maximum efficiency.
In this study, losing the shock wave profiles under interactions with grid turbulence was investigated experimentally and theoretically. We demonstrated that the shock wave contrast on side-view schlieren images gradually decreased to an undetectable level in the experiment. This shock wave ‘vanishment’ occurred at a low shock Mach number with a high turbulent Mach number. With a relatively strong shock wave, the contrast of the shock wave remained detectable although the shock wave profile region was expanded. To understand the shock wave vanishment phenomenon during interaction with turbulence, we established a shock wave vanishment model based on the solution of a one-dimensional interaction between a shock wave and forward induced flow. The criterion of the occurrence of local vanishment of the shock wave was derived as M t ⩾ ( M s 2 − 1 ) / M s , where M t is the turbulent Mach number and M s is the shock Mach number. The proposed shock vanishment model involves the effect of the interaction length and the shock wave recovery characteristics. The derived model explains the vanishment of weak shock wave profile during turbulence with an interaction length of ten times the order of the integral scale of the turbulence, as observed in the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.