OneMap is an environment for constructing linkage maps of outcrossing plant species, using full-sib families derived from two outbred parents. The analyses are performed using a novel methodology based on the maximum likelihood approach for simultaneous estimation of linkage and linkage phases (WU et al. 2002), which has been successfully applied to sugarcane (GARCIA et al. 2006). It is implemented as a set of functions for the freely distributed software R, and handles pairwise marker analysis, marker ordering and map refinement. The software is freely available at
Background Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10–13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. Results Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2–6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 “subgenomes” after their divergence ∼3.8–4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. Conclusions This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-011-1748-8) contains supplementary material, which is available to authorized users.
BackgroundSugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes.ResultsWe used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes.ConclusionsThis study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3383-x) contains supplementary material, which is available to authorized users.
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.
Quantitative trait loci (QTL) mapping is an important approach for the study of the genetic architecture of quantitative traits. For perennial species, inbred lines cannot be obtained due to inbreed depression and a long juvenile period. Instead, linkage mapping can be performed by using a full-sib progeny. This creates a complex scenario because both markers and QTL alleles can have different segregation patterns as well as different linkage phases between them. We present a two-step method for QTL mapping using full-sib progeny based on composite interval mapping (i.e., interval mapping with cofactors), considering an integrated genetic map with markers with different segregation patterns and conditional probabilities obtained by a multipoint approach. The model is based on three orthogonal contrasts to estimate the additive effect (one in each parent) and dominance effect. These estimatives are obtained using the EM algorithm. In the first step, the genome is scanned to detect QTL. After, segregation pattern and linkage phases between QTL and markers are estimated. A simulated example is presented to validate the methodology. In general, the new model is more effective than existing approaches, because it can reveal QTL present in a full-sib progeny that segregates in any pattern present and can also identify dominance effects. Also, the inclusion of cofactors provided more statistical power for QTL mapping.
BackgroundGenotyping-by-sequencing (GBS) has been used broadly in genetic studies for several species, especially those with agricultural importance. However, its use is still limited in autopolyploid species because genotype calling software generally fails to properly distinguish heterozygous classes based on allele dosage.ResultsVCF2SM is a Python script that integrates sequencing depth information of polymorphisms in variant call format (VCF) files and SuperMASSA software for quantitative genotype calling. VCFs can be obtained from any variant discovery software that outputs exact allele sequencing depth, such as a modified version of the Tassel-GBS pipeline provided here. VCF2SM was successfully applied in analyzing GBS data from diverse panels (alfalfa and potato) and full-sib mapping populations (alfalfa and switchgrass) of polyploid species.ConclusionsWe demonstrate that our approach can help plant geneticists working with autopolyploid species to advance their studies by distinguishing allele dosage from GBS data.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2433-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.