We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., L OH > 10 L ) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ∼40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1−W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F 22 μm /F 3.4 μm ). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α 22−12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22 μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support the pumping of OHM emission that is dominated by the far infrared radiation, instead of the MIR radiation.
With the proposal and promotion of the "double carbon" goal, the green certificate quota system and the carbon emission trading system have attracted wide attention. However, China has not yet formed a mature and effective green certificate market and carbon emission market, and the current system has not performed well in encouraging the consumption of renewable energy and promoting the emission reduction effect. In order to improve the market activity, this paper proposes a product mutual recognition system of green certificate and CCER. Meanwhile, based on blockchain technology, the joint market business process of green certificate and carbon emission right is designed, and the consensus mechanism of blockchain is utilized and improved. On the basis of ensuring the security and privacy of the trading data of green certificate and carbon emission market, By encouraging market trading to incentivize renewable energy generation and limit the carbon emissions of conventional fossil fuel units, we will facilitate the energy transition and advance the "two-carbon" goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.