SUMMARYThe most accurate boundary element formulation to deal with fracture mechanics problems is obtained with the implementation of the associated Green's function acting as the fundamental solution. Consequently, the range of applications of this formulation is dependent on the availability of the appropriate Green's function for actual crack geometry. Analytical Green's functions have been presented for a few single crack configurations in 2-D applications and require complex variable theory. This work extends the applicability of the formulation through the introduction of efficient numerical means of computing the Green's function components for single or multiple crack problems, of general geometry, including the implementation to 3-D problems as a future development. Also, the approach uses real variables only and well-established boundary integral equations.
SUMMARYThe use of Green's functions has been considered a powerful technique in the solution of fracture mechanics problems by the boundary element method (BEM). Closed-form expressions for Green's function components, however, have only been available for few simple 2-D crack geometry applications and require complex variable theory. The present authors have recently introduced an alternative numerical procedure to compute the Green's function components that produced BEM results for 2-D general geometry multiple crack problems, including static and dynamic applications. This technique is not restricted to 2-D problems and the computational aspects of the 3-D implementation of the numerical Green's function approach are now discussed, including examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.