Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91 phox ) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91 phox /NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca 2؉ . However, the significance of Ca 2؉ binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca 2؉ ionophore that induces Ca 2؉ influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca 2؉ binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca 2؉ binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.Photosynthetic plants have developed various mechanisms to cope with oxidative stress, such as the production of antioxidants and enzymes that scavenge reactive oxygen species (ROS).3 Plants are also equipped with mechanisms for producing ROS in response to internal and external stimuli. ROS production is induced during many physiological processes, including stress responses, cell growth, hormonal responses, stomatal closure, and disease resistance (see Refs. 1-4 and references therein).ROS production is induced in plants in response to recognition of pathogenic signals, such as pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) or elicitors. Elicitor-induced ROS production is preceded by a rapid increase in the cytosolic free Ca 2ϩ concentration ([Ca 2ϩ ] cyt ) (5-7) and is inhibited both by Ca 2ϩ chelators such as EGTA and BAPTA, and by Ca 2ϩ channel blockers such as La 3ϩ (6,8). The overexpression of rice two-pore channel 1 (OsTPC1), which is a putative voltage-gated Ca 2ϩ channel, enhanced elicitor-induced ROS production (9). Elicitor-induced ROS production is also inhibited by diphenylene iodonium (DPI), which is known to inhibit NADPH oxidase activity (6, 10). NADPH oxidase activity in the microsomal membrane fraction from tomato and tobacco was activated by adding Ca 2ϩ in vitro (11), suggesting that elicitor-induced ROS production by plant NADPH oxidase might be dependent on Ca 2ϩ . In mammalian phagocytes, ROS production is mediated by the NADPH-dependent phagocytic oxidase (phox) complex, which consists of the catalytic subunit gp91 phox /NADPH oxidase (NOX) 2, together with the regulatory subunits p22 phox , p40 phox , p47 phox , p67 phox , and the small GTP-binding protein Rac (12). In...
Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images.
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme–substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.