The aim of this paper is to study a type of nonlocal elliptic equation whose format includes a kernel k and a design function h. We analyze how this equation is connected with the classical elliptic equation that includes h as diffusive term. On one hand, the spectrum of the nonlocal operator that defines the nonlocal equation is studied. Existence and unicity of solutions for the nonlocal equation are proved. On the other hand, the convergence of these solutions to the solution of the classical elliptic equation as the kernel k converges to a Dirac Delta is analyzed. This work is performed by using an spectral theorem on the nonlocal operator and by applying some specific compactness results. The kernel k is assumed to be radial. Dirichlet boundary conditions are assumed for the classical problem, whereas for the nonlocal equation a nonlocal boundary Dirichlet constraint must be defined.
Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
It is well-known from the recent literature that nonlocal integral models are suitable to approximate integral functionals or partial differential equations. In the present work, a nonlocal optimal design model has been considered as approximation of the corresponding classical or local optimal control problem. The new model is driven by a nonlocal elliptic equation and the cost functional belongs to a broad class of nonlocal functional integrals. The purpose of this paper is to prove existence of optimal design for the new model. This work is complemented by showing that the limit of the nonlocal problem is the local one when the cost to minimize is the compliance functional (see [14]).
This work is a follow-up to a series of articles by the authors where the same topic for the elliptic case is analyzed. In this article, a class of nonlocal optimal design problem driven by parabolic equations is examined. After a review of results concerning existence and uniqueness for the state equation, a detailed formulation of the nonlocal optimal design is given. The state equation is of nonlocal parabolic type, and the associated cost functional belongs to a broad class of nonlocal integrals. In the first part of the work, a general result on the existence of nonlocal optimal design is proved. The second part is devoted to analyzing the convergence of nonlocal optimal design problems toward the corresponding classical problem of optimal design. After a slight modification of the problem, either on the cost functional or by considering a new set of admissibility, the G-convergence for the state equation and, consequently, the convergence of the nonlocal optimal design problem are proved.
This work is an extension of the paper by Cea and Malanowski to the nonlocal and nonlinear framework. The addressed topic is the study of an optimal control problem driven by a nonlocal p-Laplacian equation that includes a coefficient playing the role of control in the optimization problem. The cost functional is the compliance, and the constraint on the states are of the Dirichlet homogeneous type. The goal of the present work is a numerical scheme for the nonlocal optimal control problem and its use to approximate solutions in the local setting. The main contributions of the paper are a maximum principle and a uniqueness result. These findings and the monotonicity properties of the p-Laplacian operator have been crucial to building an effective numerical scheme, which, at the same time, has provided the existence of optimal designs. Several numerical simulations complete the work.
In the present work, a nonlocal optimal design model has been considered as an approximation of the corresponding classical or local optimal design problem. The new model is driven by the nonlocal p-Laplacian equation, the design is the diffusion coefficient and the cost functional belongs to a broad class of nonlocal functional integrals. The purpose of this paper is to prove the existence of an optimal design for the new model. This work is complemented by showing that the limit of the nonlocal p-Laplacian state equation converges towards the corresponding local problem. Also, as in the paper by F. Andrés and J. Muñoz [J. Math. Anal. Appl. 429:288-310], the convergence of the nonlocal optimal design problem toward the local version is studied. This task is successfully performed in two different cases: when the cost to minimize is the compliance functional, and when an additional nonlocal constraint on the design is assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.