Given a finite subgroup of SL 3 C, we determine how an arbitrary finite dimensional irreducible representation of SL 3 C decomposes under the action of . To the subgroup we associate a generalized McKay matrix C . Then, generalizing a method used by B. Kostant for SL 2 C, we decompose C as a sum of products of reflections associated to mutually orthogonal roots: this is a sort of algebraic McKay correspondence in dimension 3.
Within the framework of McKay correspondence we determine, for every finite subgroup Γ of SL4C, how the finitedimensional irreducible representations of SL4C decompose under the action of Γ. Let h be a Cartan subalgebra of sl4C and let 1, 2, 3 be the corresponding fundamental weights. For (p, q, r) ∈ N 3 , the restriction πp,q,r|Γ of the irreducible representation πp,q,r of highest weight p 1 + q 2 + r 3 of SL4C decomposes as πp,q,r|Γ = l i=0 mi(p, q, r)γi, where {γ0,. .. , γ l } is the set of equivalence classes of irreducible finite-dimensional complex representations of Γ. We determine the multiplicities mi(p, q, r) and prove that the series PΓ(t, u, w)i = ∞ p=0 ∞ q=0 ∞ r=0 mi(p, q, r)t p u q w r are rational functions. This generalizes the results of Kostant for SL2C and the results of our preceding works for SL3C. У рамках вiдповiдностi Маккея для кожної скiнченної пiдгрупи Γ групи SL4C визначено, яким чином скiнченновимiрне незвiдне зображення SL4C розкладається пiд дiєю Γ. Нехай h-картанова пiдалгебра sl4C, а 1, 2, 3-вiдповiднi фундаментальнi ваги. Для (p, q, r) ∈ N 3 звуження πp,q,r|Γ незвiдного зображення πp,q,r найбiльшої ваги p 1 + q 2 + r 3 в SL4C розкладається у виглядi πp,q,r|Γ = l i=0 mi(p, q, r)γi, де {γ0,. .. , γ l }-множина класiв еквiвалентностi незвiдних скiнченновимiрних комплексних зображень Γ. Визначено кратностi mi(p, q, r) та доведено, що ряди PΓ(t, u, w)i = ∞ p=0 ∞ q=0 ∞ r=0 mi(p, q, r)t p u q w r є рацiональними функцiями. Це є узагальненням результатiв Костанта для SL2C, а також результатiв наших попереднiх робiт для SL3C.
Let g be a finite-dimensional semi-simple Lie algebra, h a Cartan subalgebra of g, and W its Weyl group. The group W acts diagonally on V := h ⊕ h * , as well as on C[V ]. The purpose of this article is to study the Poisson homology of the algebra of invariants C[V ] W endowed with the standard symplectic bracket.To begin with, we give general results about the Poisson homology space in degree 0, denoted by HP 0 (C[V ] W ), in the case where g is of type B n − C n or D n , results which support Alev's conjecture.Then we are focusing the interest on the particular cases of ranks 2 and 3, by computing the Poisson homology space in degree 0 in the cases where g is of type B 2 (so 5 ), D 2 (so 4 ), then B 3 (so 7 ), and D 3 = A 3 (so 6 sl 4 ). In order to do this, we make use of a functional equation introduced by Y. Berest, P. Etingof and V. Ginzburg. We recover, by a different method, the result established by J. Alev and L. Foissy, according to which the dimension of HP 0 (C[V ] W ) equals 2 for B 2 . Then we calculate the dimension of this space and we show that it is equal to 1 for D 2 . We also calculate it for the rank 3 cases, we show that it is equal to 3 for B 3 − C 3 and 1 for D 3 = A 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.