The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure (BIDS) standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.
Arterial spin labeling (ASL) is a non-invasive MRI technique that allows for quantitative measurement of cerebral perfusion. Incomplete or inaccurate reporting of acquisition parameters complicates quantification, analysis, and sharing of ASL data, particularly for studies across multiple sites, platforms, and ASL methods. There is a strong need for standardization of ASL data storage, including acquisition metadata. Recently, ASL-BIDS, the BIDS extension for ASL, was developed and released in BIDS 1.5.0. This manuscript provides an overview of the development and design choices of this first ASL-BIDS extension, which is mainly aimed at clinical ASL applications. Discussed are the structure of the ASL data, focussing on storage order of the ASL time series and implementation of calibration approaches, unit scaling, ASL-related BIDS fields, and storage of the labeling plane information. Additionally, an overview of ASL-BIDS compatible conversion and ASL analysis software and ASL example datasets in BIDS format is provided. We anticipate that large-scale adoption of ASL-BIDS will improve the reproducibility of ASL research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.