Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid biosynthesis and adipogenesis by controlling the expression of several enzymes required for cholesterol, fatty acid, triacylglycerol and phospholipid synthesis. In vertebrates, SREBP activation is mainly controlled by a complex and well-characterized feedback mechanism mediated by cholesterol, a crucial bio-product of the SREBP-activated mevalonate pathway. In this work, we identified acto-myosin contractility and mechanical forces imposed by the extracellular matrix (ECM) as SREBP1 regulators. SREBP1 control by mechanical cues depends on geranylgeranyl pyrophosphate, another key bio-product of the mevalonate pathway, and impacts on stem cell fate in mouse and on fat storage in Drosophila. Mechanistically, we show that activation of AMP-activated protein kinase (AMPK) by ECM stiffening and geranylgeranylated RhoA-dependent acto-myosin contraction inhibits SREBP1 activation. Our results unveil an unpredicted and evolutionary conserved role of SREBP1 in rewiring cell metabolism in response to mechanical cues.
Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that 'preconditions' the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.