There is a growing interest in the area of machine learning and creativity. This survey presents an overview of the history and the state of the art of computational creativity theories, machine learning techniques, including generative deep learning, and corresponding automatic evaluation methods. After presenting a critical discussion of the key contributions in this area, we outline the current research challenges and emerging opportunities in this field.1 http://www.in-vacua.com/cgi-bin/haiku.pl 2 Quite interestingly, after Hofstadter's classic, many AI projects focused on Bach's music, from Bach by Design, the first recording produced by the artificial composer developed by David Cope [22] to COCONET [48] and DeepBach [44].
Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning (GDL) techniques, which have seen a formidable development and remarkable refinement in the very recent years. Given the inherent characteristics of these techniques, a series of novel legal problems arise. In this article, we consider a set of key questions in the area of GDL for the arts, including the following: is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? Who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both the United States and the European Union, and potential future alternatives. We then extend our analysis to code generation, which is an emerging area of GDL. Finally, we also formulate a set of practical guidelines for artists and developers working on deep learning generated art, as well as some policy suggestions for policymakers.
Measuring machine creativity is one of the most fascinating challenges in Artificial Intelligence. This paper explores the possibility of using generative learning techniques for automatic assessment of creativity. The proposed solution does not involve human judgement, it is modular and of general applicability. We introduce a new measure, namely DeepCreativity, based on Margaret Boden’s definition of creativity as composed by value, novelty and surprise. We evaluate our methodology (and related measure) considering a case study, i.e., the generation of 19th century American poetry, showing its effectiveness and expressiveness.
Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning techniques. Also given their success, several legal problems arise when working with these techniques. In this article we consider a set of key questions in the area of generative deep learning for the arts. Is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? And then, who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both US and EU and the future alternatives, trying to define a set of guidelines for artists and developers working on deep learning generated art.
Measuring machine creativity is one of the most fascinating challenges in Artificial Intelligence. This paper explores the possibility of using generative learning techniques for automatic assessment of creativity. The proposed solution does not involve human judgement, it is modular and of general applicability. We introduce a new measure, namely DeepCreativity, based on Margaret Boden's definition of creativity as composed by value, novelty and surprise. We evaluate our methodology (and related measure) considering a case study, i.e., the generation of 19th century American poetry, showing its effectiveness and expressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.