On searching for endogenous, low-molecular-weight effectors of benzodiazepine alkaloid biosynthesis in Penicillium cyclopium uric acid was isolated from ethanolic or autoclaved mycelial extracts of this fungus. The isolation was based on a three-step high-pressure liquid chromatography procedure guided by a microplate bioassay, and uric acid was identified by mass spectrometry and the uricase reaction. Conidiospore suspensions that were treated with this compound during the early phase of outgrowth developed emerged cultures with an enhanced rate of alkaloid production. Uric acid treatment did not increase the in vitro measurable activity of the rate-limiting biosynthetic enzyme, cyclopeptine synthetase. However, these cultures displayed a reduced rate of uptake of the alkaloid precursor L-phenylalanine into the vacuoles of the hyphal cells as assayed in situ. It is suggested that the depressed capacity of vacuolar uptake caused by the contact of outgrowing spores with uric acid liberated from hyphal cells results in an enhanced availability of the precursor L-phenylalanine in the cytoplasm and thus accounts at least in part for the increase in alkaloid production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.