Natal teeth are those present in the oral cavity at the child's birth. These teeth can cause ulcers on the ventral surface of the tongue, lip, and the mother's breast characterizing the Riga-Fede Disease. The treatment depends on the tooth's mobility and the risk of aspiration or swallowing; whether it is supernumerary or regular primary teeth; whether it is causing interference in breastfeeding; breast and oral soft tissue injuries; and the general state of child's health. A 1-month-old female infant was diagnosed with two natal teeth and an ulcerated lesion on the ventral surface of the tongue, leading to the clinical diagnosis of Riga-Fede Disease. The treatment performed consisted of the maintenance of the natal tooth that showed no increased mobility, adding a small increment of glass ionomer cement to its incisal edge, and orientation for hygiene with saline solution. Due to the increased mobility of the other natal tooth, surgical removal was performed. There was regular monitoring of the patient and complete wound healing was observed after 15 days. The proposed treatment was successful and the patient is still in follow-up without recurrence of the lesion after one year.
Aim: With the development of the light-emitting diode (LED) to photo-activate composite resin, greater intensities could be reached without greater elevation of temperature in the mass of the composite resin and in the dental structure arisen from the irradiance in comparison to halogen equipments. This new scenario created a necessity to investigate the influence of temperature over the composite polymerization. Materials and methods:Several curing temperatures 25, 50, 75, and 100°C) were used to polymerize a composite resin (Filtek Z250, 3M ESPE) for 40 and 60 s, using the halogen equipment Gnatus Optilight Digital (halogen) and two LEDs that use a new technology to assembly the diodes: LEC 1000 and bright LEC (MM Optics) (LED 1 and LED 2 respectively). The influence of curing temperature, added by the other variables studied, was evaluated using a methodology developed and improved at IFSC/USP, in which the penetration of a fluorescent dye in the body of the photopolymerized composite resin was quantified using fluorescence spectroscopy.Results: According to the final data submitted to an analysis of variance, the presence of two groups of results could be verified: Between 0 and 25°C, both had a great percentage of the dye penetration compared with other Tcure with a variation in penetration from 69.26 ± 8.19% to 90.99 ± 3.38%. In this analysis, the effects of time and temperature were highly notable (p < 0.05) and the lesser value of dye penetration took place at 60 s of photoactivation This penetration was, in average, smaller with the Tcure of 25°C. The results showed that there was an Araraquara, 14801903, São Paulo, Brazil, e-mail: macieljr@hotmail.com interaction between the equipment and time and between time and temperature; the other group is regarding the Tcure was from 50, 75, and 100°C, despite the p = 0.05, the effect of temperature was notable. The penetration of the dye ranged from 8.87 ± 3.55 to 39.47 ± 8.9%. The effects of equipment and time were highly notable. The penetration with the time of 60 s was in average smaller. Except with the equipment LED 1, the percentages of the dye penetration were greater with the Tcure of 100°C. The smallest average was the Tcure of 50°C and 60 s of photoactivation. Conclusion:Based on the available data regarding the influence of curing temperature on the polymerization process of composite resins, was possible to concluded that small increments of heat increased the degree of conversion. We can assume that the energy supply through the generation of heat by the photopolymerizing devices can function as a heating medium for the reagent system by reducing its viscosity and increasing the mobility and agitation of its components. Clinical significance:The dentist must be aware of the effects that exist between the activation devices on the light output and their heat transmission to the composite and the tooth itself. This heat transmission might create a polymer with better characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.