Coordinated microtubule and microfilament changes are essential for the morphological development of neurons; however, little is know about the underlying molecular machinery linking these two cytoskeletal systems. Similarly, the indispensable role of RhoGTPase family proteins has been demonstrated, but it is unknown how their activities are specifically regulated in different neurites. In this paper, we show that the cytoplasmic dynein light chain Tctex-1 plays a key role in multiple steps of hippocampal neuron development, including initial neurite sprouting, axon specification, and later dendritic elaboration. The neuritogenic effects elicited by Tctex-1 are independent from its cargo adaptor role for dynein motor transport. Finally, our data suggest that the selective high level of Tctex-1 at the growth cone of growing axons drives fast neurite extension by modulating actin dynamics and also Rac1 activity.
How a neuron becomes polarized remains largely unknown. Results obtained with a function-blocking antibody and an siRNA targeting the insulin-like growth factor-1 (IGF-1) receptor suggest that an essential step in the establishment of hippocampal neuronal polarity and the initiation of axonal outgrowth is the activation of the phosphatidylinositol 3-kinase (PI3k)-Cdc42 pathway by the IGF-1 receptor, but not by the TrkA or TrkB receptors.
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.