Climate warming is affecting terrestrial ecosystems in the Canadian Arctic, potentially altering the carbon balance of the landscape and contributing additional CO 2 to the atmosphere. High spatial resolution remote sensing data can enhance models of net ecosystem exchange (NEE) and its component fluxes, gross ecosystem exchange (GEE), and ecosystem respiration (ER) by quantifying vegetation structure and function over time. In this study, we explored the variability of daytime CO 2 exchange rates for three vegetation types along a natural moisture gradient at ecologically distinct mid-and high Arctic sites. We demonstrated that for the two sites studied, there was no statistically significant variation in CO 2 exchange rates for the vegetation types through the peak growing season. Hence, the capacity to model these rates with a limited number of satellite data acquisitions is feasible. Simple bivariate models relating the Normalized Difference Vegetation Index (NDVI) to CO 2 exchange processes (GEE, ER, and NEE) were developed independent of vegetation type and geographic location and validated using independent data. The spectral models explain between 33 and 94 percent of the variation in CO 2 exchange rates at each site, indicating a high level of functional convergence in ecosystem-level structure and function within Arctic landscapes.
Wetlands in the Prairie Pothole Region (PPR) of Canada and the United States represent a unique mapping challenge. They are dynamic both seasonally and year-to-year, are very small, and frequently altered by human activity. Many efforts have been made to estimate the loss of these important habitats but a high-quality inventory of pothole wetlands is needed for data-driven conservation and management of these resources. Typical landcover classifications using one or two image dates from optical or Synthetic Aperture Radar (SAR) Earth Observation (EO) systems often produce reasonable wetland inventories for less dynamic, forested landscapes, but will miss many of the temporary and seasonal wetlands in the PPR. Past studies have attempted to capture PPR wetland dynamics by using dense image stacks of optical or SAR data. We build upon previous work, using 2017–2020 Sentinel-2 imagery processed through the Google Earth Engine (GEE) cloud computing platform to capture seasonal flooding dynamics of wetlands in a prairie pothole wetland landscape in Alberta, Canada. Using 36 different image dates, wetland flood frequency (hydroperiod) was calculated by classifying water/flooding in each image date. This product along with the Global Ecosystem Dynamics Investigation (GEDI) Canopy Height Model (CHM) was then used to generate a seven-class wetland inventory with wetlands classified as areas with seasonal but not permanent water/flooding. Overall accuracies of the resulting inventory were between 95% and 96% based on comparisons with local photo-interpreted inventories at the Canadian Wetland Classification System class level, while wetlands themselves were classified with approximately 70% accuracy. The high overall accuracy is due, in part, to a dominance of uplands in the PPR. This relatively simple method of classifying water through time generates reliable wetland maps but is only applicable to ecosystems with open/non-complex wetland types and may be highly sensitive to the timing of cloud-free optical imagery that captures peak wetland flooding (usually post snow melt). Based on this work, we suggest that expensive field or photo-interpretation training data may not be needed to map wetlands in the PPR as self-labeling of flooded and non-flooded areas in a few Sentinel-2 images is sufficient to classify water through time. Our approach demonstrates a framework for the operational mapping of small, dynamic PPR wetlands that relies on open-access EO data and does not require costly, independent training data. It is an important step towards the effective conservation and management of PPR wetlands, providing an efficient method for baseline and ongoing mapping in these dynamic environments.
Earth observation technologies have strong potential to help map and monitor wildlife habitats. Yellow Rail, a rare wetland obligate bird species, is a species of concern in Canada and provides an interesting case study for monitoring wetland habitat with Earth observation data. Yellow Rail has highly specific habitat requirements characterized by shallowly flooded graminoid vegetation, the availability of which varies seasonally and year-to-year. Polarimetric Synthetic Aperture Radar (SAR) in combination with optical data should, in theory, be a great resource for mapping and monitoring these habitats. This study evaluates the use of RADARSAT-2 data and Landsat-8 data to characterize, map, and monitor Yellow Rail habitat in a wetland area within the mineable oil sands region. Specifically, we investigate: (1) The relative importance of polarimetric SAR and Landsat-8 data for predicting Yellow Rail habitat; (2) characterization of wetland habitat with polarimetric SAR data; (3) yearly trends in available habitat; and (4) predictions of potentially suitable habitat across northeastern Alberta. Results show that polarimetric SAR using the Freeman–Durden decomposition and polarization ratios were the most important predictors when modeling the Yellow Rail habitat. These parameters also effectively characterize this habitat based on high congruence with existing descriptions of suitable habitat. Applying the prediction model across all wetland areas showed accurate predictions of occurrence (validated on field occurrence data), and high probability habitats were constrained to very specific wetland areas. Using the RADARSAT-2 data to monitor yearly changes to Yellow Rail habitat was inconclusive, likely due to the different image acquisition times of the 2014 and 2016 images, which may have captured seasonal, rather than inter-annual, wetland dynamics. Polarimetric SAR has proved to be very useful for capturing the specific hydrology and vegetation structure of the Yellow Rail habitat, which could be a powerful technology for monitoring and conserving wetland species habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.