An ambulatory monitoring system is developed for the estimation of spatio-temporal gait parameters. The inertial measurement unit embedded in the system is composed of one biaxial accelerometer and one rate gyroscope, and it reconstructs the sagittal trajectory of a sensed point on the instep of the foot. A gait phase segmentation procedure is devised to determine temporal gait parameters, including stride time and relative stance; the procedure allows to define the time intervals needed for carrying an efficient implementation of the strapdown integration, which allows to estimate stride length, walking speed, and incline. The measurement accuracy of walking speed and inclines assessments is evaluated by experiments carried on adult healthy subjects walking on a motorized treadmill. Root-mean-square errors less than 0.18 km/h (speed) and 1.52% (incline) are obtained for tested speeds and inclines varying in the intervals [3, 6] km/h and [-5, + 15]%, respectively. Based on the results of these experiments, it is concluded that foot inertial sensing is a promising tool for the reliable identification of subsequent gait cycles and the accurate assessment of walking speed and incline.
Background: Parkinson's disease (PD) is a common and disabling pathology that is characterized by both motor and non-motor symptoms and affects millions of people worldwide. The disease significantly affects quality of life of those affected. Many works in literature discuss the effects of the disease. The most promising trends involve sensor devices, which are low cost, low power, unobtrusive, and accurate in the measurements, for monitoring and managing the pathology. Objectives: This review focuses on wearable devices for PD applications and identifies five main fields: early diagnosis, tremor, body motion analysis, motor fluctuations (ON–OFF phases), and home and long-term monitoring. The concept is to obtain an overview of the pathology at each stage of development, from the beginning of the disease to consider early symptoms, during disease progression with analysis of the most common disorders, and including management of the most complicated situations (i.e., motor fluctuations and long-term remote monitoring). Data sources: The research was conducted within three databases: IEEE Xplore®, Science Direct®, and PubMed Central®, between January 2006 and December 2016. Study eligibility criteria: Since 1,429 articles were found, accurate definition of the exclusion criteria and selection strategy allowed identification of the most relevant papers. Results: Finally, 136 papers were fully evaluated and included in this review, allowing a wide overview of wearable devices for the management of Parkinson's disease.
A new generation of mobile sensing approaches offers significant advantages over traditional platforms in terms of test speed, control, low cost, ease-of-operation, and data management, and requires minimal equipment and user involvement. The marriage of novel sensing technologies with cellphones enables the development of powerful lab-on-smartphone platforms for many important applications including medical diagnosis, environmental monitoring, and food safety analysis. This paper reviews the recent advancements and developments in the field of smartphone-based food diagnostic technologies, with an emphasis on custom modules to enhance smartphone sensing capabilities. These devices typically comprise multiple components such as detectors, sample processors, disposable chips, batteries and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. To date, researchers have demonstrated several promising approaches employing various sensing techniques and device configurations. We aim to provide a systematic classification according to the detection strategy, providing a critical discussion of strengths and weaknesses. We have also extended the analysis to the food scanning devices that are increasingly populating the Internet of Things (IoT) market, demonstrating how this field is indeed promising, as the research outputs are quickly capitalized on new start-up companies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.