Amyloid-β peptide (Aβ) forms metastable oligomers >50 kDa, termed AβOs, that are more effective than Aβ amyloid fibrils at triggering Alzheimer’s disease-related processes such as synaptic dysfunction and Tau pathology, including Tau mislocalization. In neurons, Aβ accumulates in endo-lysosomal vesicles at low pH. Here, we show that the rate of AβO assembly is accelerated 8,000-fold upon pH reduction from extracellular to endo-lysosomal pH, at the expense of amyloid fibril formation. The pH-induced promotion of AβO formation and the high endo-lysosomal Aβ concentration together enable extensive AβO formation of Aβ42 under physiological conditions. Exploiting the enhanced AβO formation of the dimeric Aβ variant dimAβ we furthermore demonstrate targeting of AβOs to dendritic spines, potent induction of Tau missorting, a key factor in tauopathies, and impaired neuronal activity. The results suggest that the endosomal/lysosomal system is a major site for the assembly of pathomechanistically relevant AβOs.
Amyloid-b peptides (Ab) assemble into both rigid amyloid fibrils and metastable oligomers termed AbO or protofibrils. In Alzheimers disease, Ab fibrils constitute the core of senile plaques, but Ab protofibrils may represent the main toxic species. Ab protofibrils accumulate at the exterior of senile plaques, yet the protofibril-fibril interplay is not well understood. Applying chemical kinetics and atomic force microscopy to the assembly of Ab and lysozyme, protofibrils are observed to bind to the lateral surfaces of amyloid fibrils. When utilizing Ab variants with different critical oligomer concentrations, the interaction inhibits the autocatalytic proliferation of amyloid fibrils by secondary nucleation on the fibril surface. Thus, metastable oligomers antagonize their replacement by amyloid fibrils both by competing for monomers and blocking secondary nucleation sites. The protofibril-fibril interaction governs their temporal evolution and potential to exert specific toxic activities.
Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-β sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways *
Amyloid‐β peptides (Aβ) assemble into both rigid amyloid fibrils and metastable oligomers termed AβO or protofibrils. In Alzheimer's disease, Aβ fibrils constitute the core of senile plaques, but Aβ protofibrils may represent the main toxic species. Aβ protofibrils accumulate at the exterior of senile plaques, yet the protofibril–fibril interplay is not well understood. Applying chemical kinetics and atomic force microscopy to the assembly of Aβ and lysozyme, protofibrils are observed to bind to the lateral surfaces of amyloid fibrils. When utilizing Aβ variants with different critical oligomer concentrations, the interaction inhibits the autocatalytic proliferation of amyloid fibrils by secondary nucleation on the fibril surface. Thus, metastable oligomers antagonize their replacement by amyloid fibrils both by competing for monomers and blocking secondary nucleation sites. The protofibril—fibril interaction governs their temporal evolution and potential to exert specific toxic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.