50Publications

1,228Citation Statements Received

2,045Citation Statements Given

How they've been cited

1,411

10

1,218

0

How they cite others

1,382

10

2,035

0

Publications

Order By: Most citations

Two architectures that generalize convolutional neural networks (CNNs) for the processing of signals supported on graphs are introduced. We start with the selection graph neural network (GNN), which replaces linear time invariant filters with linear shift invariant graph filters to generate convolutional features and reinterprets pooling as a possibly nonlinear subsampling stage where nearby nodes pool their information in a set of preselected sample nodes. A key component of the architecture is to remember the position of sampled nodes to permit computation of convolutional features at deeper layers. The second architecture, dubbed aggregation GNN, diffuses the signal through the graph and stores the sequence of diffused components observed by a designated node. This procedure effectively aggregates all components into a stream of information having temporal structure to which the convolution and pooling stages of regular CNNs can be applied. A multinode version of aggregation GNNs is further introduced for operation in large scale graphs. An important property of selection and aggregation GNNs is that they reduce to conventional CNNs when particularized to time signals reinterpreted as graph signals in a circulant graph. Comparative numerical analyses are performed in a source localization application over synthetic and realworld networks. Performance is also evaluated for an authorship attribution problem and text category classification. Multinode aggregation GNNs are consistently the best performing GNN architecture.

etwork data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this article, we leverage graph signal processing (GSP) to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties, which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average (ARMA) graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.

Optimal power flow (OPF) is one of the most important optimization problems in the energy industry. In its simplest form, OPF attempts to find the optimal power that the generators within the grid have to produce to satisfy a given demand. Optimality is measured with respect to the cost that each generator incurs in producing this power. The OPF problem is non-convex due to the sinusoidal nature of electrical generation and thus is difficult to solve. Using small angle approximations leads to a convex problem known as DC OPF, but this approximation is no longer valid when power grids are heavily loaded. Many approximate solutions have been since put forward, but these do not scale to large power networks. In this paper, we propose using graph neural networks (which are localized, scalable parametrizations of network data) trained under the imitation learning framework to approximate a given optimal solution. While the optimal solution is costly, it is only required to be computed for network states in the training set. During test time, the GNN adequately learns how to compute the OPF solution. Numerical experiments are run on the IEEE-30 and IEEE-118 test cases.

Graph processes exhibit a temporal structure determined by the sequence index and and a spatial structure determined by the graph support. To learn from graph processes, an information processing architecture must then be able to exploit both underlying structures. We introduce Graph Recurrent Neural Networks (GRNNs), which achieve this goal by leveraging the hidden Markov model (HMM) together with graph signal processing (GSP). In the GRNN, the number of learnable parameters is independent of the length of the sequence and of the size of the graph, guaranteeing scalability. We also prove that GRNNs are permutation equivariant and that they are stable to perturbations of the underlying graph support. Following the observation that stability decreases with longer sequences, we propose a time-gated extension of GRNNs. We also put forward node-and edge-gated variants of the GRNN to address the problem of vanishing gradients arising from long range graph dependencies. The advantages of GRNNs over GNNs and RNNs are demonstrated in a synthetic regression experiment and in a classification problem where seismic wave readings from a network of seismographs are used to predict the region of an earthquake. Finally, the benefits of time, node and edge gating are experimentally validated in multiple time and spatial correlation scenarios.

Graph signals are signals with an irregular structure that can be described by a graph. Graph neural networks (GNNs) are information processing architectures tailored to these graph signals and made of stacked layers that compose graph convolutional filters with nonlinear activation functions. Graph convolutions endow GNNs with invariance to permutations of the graph nodes' labels. In this paper, we consider the design of trainable nonlinear activation functions that take into consideration the structure of the graph. This is accomplished by using graph median filters and graph max filters, which mimic linear graph convolutions and are shown to retain the permutation invariance of GNNs. We also discuss modifications to the backpropagation algorithm necessary to train local activation functions. The advantages of localized activation function architectures are demonstrated in four numerical experiments: source localization on synthetic graphs, authorship attribution of 19th century novels, movie recommender systems and scientific article classification. In all cases, localized activation functions are shown to improve model capacity.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

10624 S. Eastern Ave., Ste. A-614

Henderson, NV 89052, USA

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.